Uncertainty Principles for Fourier Multipliers

Michael Northington V

School of Mathematics
Georgia Tech

6/6/2018

With Shahaf Nitzan (Ga Tech) and Alex Powell (Vanderbilt)

Table of Contents

Exponentials in Weighted Spaces

Restrictions on Fourier Multipliers

Applications to Balian-Low Type Theorems

Exponentials in Weighted Spaces

Let $E=E(d)=\left\{e^{2 \pi i k \cdot x}\right\}_{k \in \mathbb{Z}^{d}}$.

Exponentials in Weighted Spaces

Let $E=E(d)=\left\{e^{2 \pi i k \cdot x}\right\}_{k \in \mathbb{Z}^{d}}$.

- E is an orthonormal basis for $L^{2}\left(\mathbb{T}^{d}\right)=L^{2}\left(\mathbb{R}^{d} / \mathbb{Z}^{d}\right)$.

Exponentials in Weighted Spaces

Let $E=E(d)=\left\{e^{2 \pi i k \cdot x}\right\}_{k \in \mathbb{Z}^{d}}$.

- E is an orthonormal basis for $L^{2}\left(\mathbb{T}^{d}\right)=L^{2}\left(\mathbb{R}^{d} / \mathbb{Z}^{d}\right)$.
- For a weight w satisfying $w(x)>0$ almost everywhere, consider $L_{w}^{2}\left(\mathbb{T}^{d}\right)$ with norm,

$$
\|g\|_{L_{w}^{2}\left(\mathbb{T}^{d}\right)}^{2}=\int_{\mathbb{T}^{d}}|g(x)|^{2} w(x) d x .
$$

Exponentials in Weighted Spaces

Let $E=E(d)=\left\{e^{2 \pi i k \cdot x}\right\}_{k \in \mathbb{Z}^{d}}$.

- E is an orthonormal basis for $L^{2}\left(\mathbb{T}^{d}\right)=L^{2}\left(\mathbb{R}^{d} / \mathbb{Z}^{d}\right)$.
- For a weight w satisfying $w(x)>0$ almost everywhere, consider $L_{w}^{2}\left(\mathbb{T}^{d}\right)$ with norm,

$$
\|g\|_{L_{w}^{2}\left(\mathbb{T}^{d}\right)}^{2}=\int_{\mathbb{T}^{d}}|g(x)|^{2} w(x) d x .
$$

- Question 1: What basis properties does E have in $L_{w}^{2}\left(\mathbb{T}^{d}\right)$ and can these be characterized in terms of w ?

Exponentials in Weighted Spaces

Let $E=E(d)=\left\{e^{2 \pi i k \cdot x}\right\}_{k \in \mathbb{Z}^{d}}$.

- E is an orthonormal basis for $L^{2}\left(\mathbb{T}^{d}\right)=L^{2}\left(\mathbb{R}^{d} / \mathbb{Z}^{d}\right)$.
- For a weight w satisfying $w(x)>0$ almost everywhere, consider $L_{w}^{2}\left(\mathbb{T}^{d}\right)$ with norm,

$$
\|g\|_{L_{w}^{2}\left(\mathbb{T}^{d}\right)}^{2}=\int_{\mathbb{T}^{d}}|g(x)|^{2} w(x) d x
$$

- Question 1: What basis properties does E have in $L_{w}^{2}\left(\mathbb{T}^{d}\right)$ and can these be characterized in terms of w ?
- Question 2: Why do we care about this setting?

Example 1: Gabor Systems and the Zak Transform

- Gabor System: For $g \in L^{2}(\mathbb{R})$,

$$
G(g):=\left\{e^{2 \pi i m x} g(x-n)\right\}_{m, n \in \mathbb{Z}}=\left\{M_{m} T_{n} g\right\}_{m, n \in \mathbb{Z}}
$$

Example 1: Gabor Systems and the Zak Transform

- Gabor System: For $g \in L^{2}(\mathbb{R})$,

$$
G(g):=\left\{e^{2 \pi i m x} g(x-n)\right\}_{m, n \in \mathbb{Z}}=\left\{M_{m} T_{n} g\right\}_{m, n \in \mathbb{Z}}
$$

- Zak Transform: $Z g(x, y):=\sum_{k \in \mathbb{Z}} g(x-k) e^{2 \pi i k y}$

Example 1: Gabor Systems and the Zak Transform

- Gabor System: For $g \in L^{2}(\mathbb{R})$,

$$
G(g):=\left\{e^{2 \pi i m x} g(x-n)\right\}_{m, n \in \mathbb{Z}}=\left\{M_{m} T_{n} g\right\}_{m, n \in \mathbb{Z}}
$$

- Zak Transform: $Z g(x, y):=\sum_{k \in \mathbb{Z}} g(x-k) e^{2 \pi i k y}$
- Converts TF-shifts to exponentials:

$$
\begin{aligned}
Z\left(M_{m} T_{n} g\right) & =e^{2 \pi i(m x-n y)} Z g \\
Z(G(g)) & =\left\{e^{2 \pi i(m x-n y)} Z(g)\right\}_{n, m \in \mathbb{Z}}
\end{aligned}
$$

Example 1: Gabor Systems and the Zak Transform

- Gabor System: For $g \in L^{2}(\mathbb{R})$,

$$
G(g):=\left\{e^{2 \pi i m x} g(x-n)\right\}_{m, n \in \mathbb{Z}}=\left\{M_{m} T_{n} g\right\}_{m, n \in \mathbb{Z}}
$$

- Zak Transform: $Z g(x, y):=\sum_{k \in \mathbb{Z}} g(x-k) e^{2 \pi i k y}$
- Converts TF-shifts to exponentials:

$$
\begin{aligned}
Z\left(M_{m} T_{n} g\right) & =e^{2 \pi i(m x-n y)} Z g \\
Z(G(g)) & =\left\{e^{2 \pi i(m x-n y)} Z(g)\right\}_{n, m \in \mathbb{Z}}
\end{aligned}
$$

- Leads to an isometric isomorphism:
- $L^{2}(\mathbb{R}) \rightarrow L_{w}^{2}\left(\mathbb{T}^{2}\right)$, for $w=|Z g|^{2}$
- $G(g) \rightarrow E=E(2)$.

Example 2: Shift-Invariant Spaces and Periodization

- Integer Translates: For $f \in L^{2}\left(\mathbb{R}^{d}\right), T(f)=\{f(\cdot-l)\}_{l \in \mathbb{Z}^{d}}$

Example 2: Shift-Invariant Spaces and Periodization

- Integer Translates: For $f \in L^{2}\left(\mathbb{R}^{d}\right), T(f)=\{f(\cdot-l)\}_{l \in \mathbb{Z}^{d}}$
- Shift-Invariant Space: $V(f)=\overline{\operatorname{span}(T(f))} L^{2}\left(\mathbb{R}^{d}\right)$

Example 2: Shift-Invariant Spaces and Periodization

- Integer Translates: For $f \in L^{2}\left(\mathbb{R}^{d}\right), T(f)=\{f(\cdot-l)\}_{l \in \mathbb{Z}^{d}}$
- Shift-Invariant Space: $V(f)=\overline{\operatorname{span}(T(f))} L^{2}\left(\mathbb{R}^{d}\right)$
- Periodization: $P \widehat{f}(\xi)=\sum_{k \in \mathbb{Z}^{d}}|\widehat{f}(\xi-k)|^{2}$

Example 2: Shift-Invariant Spaces and Periodization

- Integer Translates: For $f \in L^{2}\left(\mathbb{R}^{d}\right), T(f)=\{f(\cdot-l)\}_{l \in \mathbb{Z}^{d}}$
- Shift-Invariant Space: $V(f)=\overline{\operatorname{span}(T(f))} L^{2}\left(\mathbb{R}^{d}\right)$
- Periodization: $P \widehat{f}(\xi)=\sum_{k \in \mathbb{Z}^{d}}|\widehat{f}(\xi-k)|^{2}$
- If $h \in V(f)$, there exists a \mathbb{Z}^{d}-periodic m, so that $\widehat{h}=m \widehat{f}$.

Example 2: Shift-Invariant Spaces and Periodization

- Integer Translates: For $f \in L^{2}\left(\mathbb{R}^{d}\right), T(f)=\{f(\cdot-l)\}_{l \in \mathbb{Z}^{d}}$
- Shift-Invariant Space: $V(f)=\overline{\operatorname{span}(T(f))} L^{2}\left(\mathbb{R}^{d}\right)$
- Periodization: $P \widehat{f}(\xi)=\sum_{k \in \mathbb{Z}^{d}}|\widehat{f}(\xi-k)|^{2}$
- If $h \in V(f)$, there exists a \mathbb{Z}^{d}-periodic m, so that $\widehat{h}=m \widehat{f}$.
- Leads to an isometric isomorphism:
- $V(f) \rightarrow L_{w}^{2}\left(\mathbb{T}^{d}\right)$, for $w=P \widehat{f}$
- $h \rightarrow m$
- $T(f) \rightarrow E=E(d)$

Spanning and Independence Properties

Let \mathcal{H} be a Hilbert space, and $H=\left\{h_{n}\right\}_{n=1}^{\infty} \subset \mathcal{H}$.

- H is complete if $\overline{\operatorname{span} H}=\mathcal{H}$.

Spanning and Independence Properties

Let \mathcal{H} be a Hilbert space, and $H=\left\{h_{n}\right\}_{n=1}^{\infty} \subset \mathcal{H}$.

- H is complete if $\overline{\operatorname{span} H}=\mathcal{H}$.
- H is a frame if it's complete, and there exist constants $0<A \leq B<\infty$ with $\forall h \in \mathcal{H}, \quad A\|h\|_{\mathcal{H}}^{2} \leq \sum_{n=1}^{\infty}\left|\left\langle h, h_{n}\right\rangle\right|^{2} \leq B\|h\|_{\mathcal{H}}^{2}$.

Spanning and Independence Properties

Let \mathcal{H} be a Hilbert space, and $H=\left\{h_{n}\right\}_{n=1}^{\infty} \subset \mathcal{H}$.

Complete

- H is complete if $\overline{\operatorname{span} H}=\mathcal{H}$.
- H is a frame if it's complete, and there exist constants $0<A \leq B<\infty$ with
$\forall h \in \mathcal{H}, \quad A\|h\|_{\mathcal{H}}^{2} \leq \sum_{n=1}^{\infty}\left|\left\langle h, h_{n}\right\rangle\right|^{2} \leq B\|h\|_{\mathcal{H}}^{2}$.
- Every frame is complete, with the additional bonus that there exist a choice of coefficients such that $h=\sum c_{n} h_{n}$ with

$$
\left\|c_{n}\right\|_{l^{2}} \asymp\|h\|_{\mathcal{H}} .
$$

Spanning and Independence Properties

- H is a minimal system if for each n,

$$
h_{n} \notin \overline{\operatorname{span}\left\{h_{m}: m \neq n\right\}} .
$$

Spanning and Independence Properties

- H is a minimal system if for each n,

$$
h_{n} \notin \overline{\operatorname{span}\left\{h_{m}: m \neq n\right\}} .
$$

- H is exact if it is complete and minimal.

Spanning and Independence Properties

- H is a minimal system if for each n,

$$
h_{n} \notin \overline{\operatorname{span}\left\{h_{m}: m \neq n\right\}} .
$$

- H is exact if it is complete and minimal.
- H is a Riesz basis if there is an orthonormal basis $\left\{e_{n}\right\}_{n=1}^{\infty}$ and a bounded invertible operator T on \mathcal{H} such that

$$
T e_{n}=h_{n}
$$

Spanning and Independence Properties

- H is a minimal system if for each n,

$$
h_{n} \notin \overline{\operatorname{span}\left\{h_{m}: m \neq n\right\}} .
$$

- H is exact if it is complete and minimal.
- H is a Riesz basis if there is an orthonormal basis $\left\{e_{n}\right\}_{n=1}^{\infty}$ and a bounded invertible operator T on \mathcal{H} such that

$$
T e_{n}=h_{n} .
$$

- Riesz basis \Longrightarrow frame; Riesz basis
 minimal frame.

$\left(C_{q}\right)$-systems (Olevskii, Nitzan '07)

- Fix $2 \leq q \leq \infty .\left\{h_{n}\right\}_{n=1}^{\infty} \subset \mathcal{H}$ is a $\left(C_{q}\right)$-system if for each $h \in \mathcal{H}, h$ can be approximated to arbitrary accuracy by a finite sum $\sum a_{n} h_{n}$ such that

$$
\left\|a_{n}\right\|_{l^{q}} \leq C\|h\|_{\mathcal{H}} .
$$

$\left(C_{q}\right)$-systems (Olevskii, Nitzan '07)

- Fix $2 \leq q \leq \infty .\left\{h_{n}\right\}_{n=1}^{\infty} \subset \mathcal{H}$ is a $\left(C_{q}\right)$-system if for each $h \in \mathcal{H}, h$ can be approximated to arbitrary accuracy by a finite sum $\sum a_{n} h_{n}$ such that

$$
\left\|a_{n}\right\|_{l^{q}} \leq C\|h\|_{\mathcal{H}} .
$$

- Equivalently, $\left\{h_{n}\right\}_{n=1}^{\infty}$ is a $\left(C_{q}\right)$-system if and only if

$$
\|h\|_{\mathcal{H}} \leq C\left(\sum_{n=1}^{\infty}\left|\left\langle h, h_{n}\right\rangle\right|^{q^{\prime}}\right)^{1 / q^{\prime}}
$$

$\left(C_{q}\right)$-systems (Olevskii, Nitzan '07)

- Fix $2 \leq q \leq \infty .\left\{h_{n}\right\}_{n=1}^{\infty} \subset \mathcal{H}$ is a $\left(C_{q}\right)$-system if for each $h \in \mathcal{H}, h$ can be approximated to arbitrary accuracy by a finite sum $\sum a_{n} h_{n}$ such that

$$
\left\|a_{n}\right\|_{l^{q}} \leq C\|h\|_{\mathcal{H}} .
$$

- Equivalently, $\left\{h_{n}\right\}_{n=1}^{\infty}$ is a $\left(C_{q}\right)$-system if and only if

$$
\|h\|_{\mathcal{H}} \leq C\left(\sum_{n=1}^{\infty}\left|\left\langle h, h_{n}\right\rangle\right|^{q^{\prime}}\right)^{1 / q^{\prime}}
$$

- $\left(C_{q}\right)$ stands for completeness with l^{q} control of coefficients.

$\left(C_{q}\right)$-systems (Olevskii, Nitzan '07)

- Fix $2 \leq q \leq \infty .\left\{h_{n}\right\}_{n=1}^{\infty} \subset \mathcal{H}$ is a $\left(C_{q}\right)$-system if for each $h \in \mathcal{H}, h$ can be approximated to arbitrary accuracy by a finite sum $\sum a_{n} h_{n}$ such that

$$
\left\|a_{n}\right\|_{l^{q}} \leq C\|h\|_{\mathcal{H}} .
$$

- Equivalently, $\left\{h_{n}\right\}_{n=1}^{\infty}$ is a $\left(C_{q}\right)$-system if and only if

$$
\|h\|_{\mathcal{H}} \leq C\left(\sum_{n=1}^{\infty}\left|\left\langle h, h_{n}\right\rangle\right|^{q^{\prime}}\right)^{1 / q^{\prime}}
$$

- $\left(C_{q}\right)$ stands for completeness with l^{q} control of coefficients.
- Bessel $\left(C_{2}\right)$-system \Longleftrightarrow frame

$\left(C_{q}\right)$-systems (Olevskii, Nitzan '07)

- Fix $2 \leq q \leq \infty .\left\{h_{n}\right\}_{n=1}^{\infty} \subset \mathcal{H}$ is a $\left(C_{q}\right)$-system if for each $h \in \mathcal{H}, h$ can be approximated to arbitrary accuracy by a finite sum $\sum a_{n} h_{n}$ such that

$$
\left\|a_{n}\right\|_{l^{q}} \leq C\|h\|_{\mathcal{H}} .
$$

- Equivalently, $\left\{h_{n}\right\}_{n=1}^{\infty}$ is a $\left(C_{q}\right)$-system if and only if

$$
\|h\|_{\mathcal{H}} \leq C\left(\sum_{n=1}^{\infty}\left|\left\langle h, h_{n}\right\rangle\right|^{q^{\prime}}\right)^{1 / q^{\prime}}
$$

- $\left(C_{q}\right)$ stands for completeness with l^{q} control of coefficients.
- Bessel $\left(C_{2}\right)$-system \Longleftrightarrow frame
- $\left(C_{q}\right)$-system $\Longrightarrow\left(C_{q^{\prime}}\right)$-system for all $q^{\prime} \geq q$

$\left(C_{q}\right)$-systems

$\left(C_{q}\right)$-systems

For Exact E in $L_{w}^{2}\left(\mathbb{T}^{d}\right)$:

Back to Question 1

What is known about basis properties of E in $L_{w}^{2}\left(\mathbb{T}^{d}\right)$?

Property	Characterization
Riesz Basis	$\exists 0<A \leq B<\infty$ such that
	$A \leq\|w(x)\| \leq B$, for a.e. x

Back to Question 1

What is known about basis properties of E in $L_{w}^{2}\left(\mathbb{T}^{d}\right)$?

Property	Characterization
Riesz Basis	$\exists 0<A \leq B<\infty$ such that
	$A \leq\|w(x)\| \leq B$, for a.e. x
Frame	For $S=\{x: w(x)>0\}$,
	$w \in L^{\infty}\left(\mathbb{T}^{d}\right), w^{-1} \in L^{\infty}(S)$

Back to Question 1

What is known about basis properties of E in $L_{w}^{2}\left(\mathbb{T}^{d}\right)$?

Property	Characterization
Riesz Basis	$\exists 0<A \leq B<\infty$ such that
	$A \leq\|w(x)\| \leq B$, for a.e. x
Frame	For $S=\{x: w(x)>0\}$,
	$w \in L^{\infty}\left(\mathbb{T}^{d}\right), w^{-1} \in L^{\infty}(S)$
Minimal System	$w^{-1} \in L^{1}\left(\mathbb{T}^{d}\right)$

Back to Question 1

What is known about basis properties of E in $L_{w}^{2}\left(\mathbb{T}^{d}\right)$?

Property	Characterization				
Riesz Basis	$\exists 0<A \leq B<\infty$ such that				
	$A \leq\|w(x)\| \leq B$, for a.e. x	$	$	Frame	For $S=\{x: w(x)>0\}$,
:---:	:---:				
	$w \in L^{\infty}\left(\mathbb{T}^{d}\right), w^{-1} \in L^{\infty}(S)$				
Minimal System	$w^{-1} \in L^{1}\left(\mathbb{T}^{d}\right)$				
Exact $\left(C_{q}\right)$-system	$w^{-1 / 2} \in \mathcal{M}_{2}^{q}$				

Back to Question 1

What is known about basis properties of E in $L_{w}^{2}\left(\mathbb{T}^{d}\right)$?

Property	Characterization
Riesz Basis	$\exists 0<A \leq B<\infty$ such that
	$A \leq\|w(x)\| \leq B$, for a.e. x
Frame	For $S=\{x: w(x)>0\}$,
	$w \in L^{\infty}\left(\mathbb{T}^{d}\right), w^{-1} \in L^{\infty}(S)$
Minimal System	$w^{-1} \in L^{1}\left(\mathbb{T}^{d}\right)$
Exact $\left(C_{q}\right)$-system	$w^{-1 / 2} \in \mathcal{M}_{2}^{q}$

- The first 3 are well known: de Boor, DeVore, Ron ('92), Ron, Shen ('95), Bownik ('00)

Back to Question 1

What is known about basis properties of E in $L_{w}^{2}\left(\mathbb{T}^{d}\right)$?

Property	Characterization
Riesz Basis	$\exists 0<A \leq B<\infty$ such that
	$A \leq\|w(x)\| \leq B$, for a.e. x
Frame	For $S=\{x: w(x)>0\}$,
	$w \in L^{\infty}\left(\mathbb{T}^{d}\right), w^{-1} \in L^{\infty}(S)$
Minimal System	$w^{-1} \in L^{1}\left(\mathbb{T}^{d}\right)$
Exact $\left(C_{q}\right)$-system	$w^{-1 / 2} \in \mathcal{M}_{2}^{q}$

- The first 3 are well known: de Boor, DeVore, Ron ('92), Ron, Shen ('95), Bownik ('00)
- Nitzan, Olsen ('11) gave necessary and sufficient conditions similar to the fourth characterization

What is \mathcal{M}_{2}^{q} ?

What is \mathcal{M}_{2}^{q} ?

- For a periodic function u and a finite sequence $c=\left\{c_{n}\right\}_{n \in \mathbb{Z}^{d}}$, define T_{u} by $\widehat{T_{u} c}=u \widehat{c}$.

What is \mathcal{M}_{2}^{q} ?

- For a periodic function u and a finite sequence $c=\left\{c_{n}\right\}_{n \in \mathbb{Z}^{d}}$, define T_{u} by $\widehat{T_{u} c}=u \widehat{c}$.
- Then, $u \in \mathcal{M}_{2}^{q}$, if for all such c,

$$
\left\|T_{u} c\right\|_{l^{q}\left(\mathbb{Z}^{d}\right)} \leq C\|c\|_{l^{2}\left(\mathbb{Z}^{d}\right)}
$$

What is \mathcal{M}_{2}^{q} ?

- For a periodic function u and a finite sequence $c=\left\{c_{n}\right\}_{n \in \mathbb{Z}^{d}}$, define T_{u} by $\widehat{T_{u} c}=u \widehat{c}$.
- Then, $u \in \mathcal{M}_{2}^{q}$, if for all such c,

$$
\left\|T_{u} c\right\|_{l^{q}\left(\mathbb{Z}^{d}\right)} \leq C\|c\|_{l^{2}\left(\mathbb{Z}^{d}\right)}
$$

- Properties and Special Cases:
- If $q<2, \mathcal{M}_{2}^{q}=\{0\}$

What is \mathcal{M}_{2}^{q} ?

- For a periodic function u and a finite sequence $c=\left\{c_{n}\right\}_{n \in \mathbb{Z}^{d}}$, define T_{u} by $\widehat{T_{u} c}=u \widehat{c}$.
- Then, $u \in \mathcal{M}_{2}^{q}$, if for all such c,

$$
\left\|T_{u} c\right\|_{l^{q}\left(\mathbb{Z}^{d}\right)} \leq C\|c\|_{l^{2}\left(\mathbb{Z}^{d}\right)}
$$

- Properties and Special Cases:
- If $q<2, \mathcal{M}_{2}^{q}=\{0\}$
- $\mathcal{M}_{2}^{2}=L^{\infty}\left(\mathbb{T}^{d}\right)$ (Agrees with Riesz basis characterization)

What is \mathcal{M}_{2}^{q} ?

- For a periodic function u and a finite sequence $c=\left\{c_{n}\right\}_{n \in \mathbb{Z}^{d}}$, define T_{u} by $\widehat{T_{u} c}=u \widehat{c}$.
- Then, $u \in \mathcal{M}_{2}^{q}$, if for all such c,

$$
\left\|T_{u} c\right\|_{l^{q}\left(\mathbb{Z}^{d}\right)} \leq C\|c\|_{l^{2}\left(\mathbb{Z}^{d}\right)}
$$

- Properties and Special Cases:
- If $q<2, \mathcal{M}_{2}^{q}=\{0\}$
- $\mathcal{M}_{2}^{2}=L^{\infty}\left(\mathbb{T}^{d}\right)$ (Agrees with Riesz basis characterization)
- $\mathcal{M}_{2}^{\infty}=L^{2}\left(\mathbb{T}^{d}\right)$ (Agrees with minimal system characterization)

Table of Contents

Exponentials in Weighted Spaces

Restrictions on Fourier Multipliers

Applications to Balian-Low Type Theorems

What can prevent u from being a bounded multiplier?

Based on connections with uncertainty principles (to be described later in the talk) we wish to study what properties would prevent a function u from being in \mathcal{M}_{2}^{q}.

What can prevent u from being a bounded multiplier?

Based on connections with uncertainty principles (to be described later in the talk) we wish to study what properties would prevent a function u from being in \mathcal{M}_{2}^{q}.

If $u \in L^{\infty}\left(\mathbb{T}^{d}\right)=\mathcal{M}_{2}^{2}$, then $u \in \mathcal{M}_{2}^{q}$ for all $q \geq 2$, but if u is unbounded it will fail to be in \mathcal{M}_{2}^{q} for small q.

What can prevent u from being a bounded multiplier?

Based on connections with uncertainty principles (to be described later in the talk) we wish to study what properties would prevent a function u from being in \mathcal{M}_{2}^{q}.

If $u \in L^{\infty}\left(\mathbb{T}^{d}\right)=\mathcal{M}_{2}^{2}$, then $u \in \mathcal{M}_{2}^{q}$ for all $q \geq 2$, but if u is unbounded it will fail to be in \mathcal{M}_{2}^{q} for small q.

We will assume that $w=1 / u$ is smooth in the sense of Sobolev spaces, and that w has a zero or a set of zeros, and we will try to determine when the level of smoothness or the size of the zero set becomes too large to allow $u \in \mathcal{M}_{2}^{q}$.

What can prevent u from being a bounded multiplier?

Based on connections with uncertainty principles (to be described later in the talk) we wish to study what properties would prevent a function u from being in \mathcal{M}_{2}^{q}.

If $u \in L^{\infty}\left(\mathbb{T}^{d}\right)=\mathcal{M}_{2}^{2}$, then $u \in \mathcal{M}_{2}^{q}$ for all $q \geq 2$, but if u is unbounded it will fail to be in \mathcal{M}_{2}^{q} for small q.

We will assume that $w=1 / u$ is smooth in the sense of Sobolev spaces, and that w has a zero or a set of zeros, and we will try to determine when the level of smoothness or the size of the zero set becomes too large to allow $u \in \mathcal{M}_{2}^{q}$.

Sobolev Space:

$$
H^{s}\left(\mathbb{T}^{d}\right)=\left\{f \in L^{2}\left(\mathbb{T}^{d}\right): \sum_{k \in \mathbb{Z}^{d}}|k|^{2 s}|\widehat{f}(k)|^{2}<\infty\right\}
$$

Results with a single zero

Theorem (Nitzan, M.N., Powell)
 Let $\frac{d}{2} \leq s \leq d$, and suppose $w \in H^{s}\left(\mathbb{T}^{d}\right)$ and w has a zero.

Results with a single zero

Theorem (Nitzan, M.N., Powell)

Let $\frac{d}{2} \leq s \leq d$, and suppose $w \in H^{s}\left(\mathbb{T}^{d}\right)$ and w has a zero.

1. If $\frac{d}{2} \leq s<\frac{d}{2}+1$, then $u=\frac{1}{w} \notin \mathcal{M}_{2}^{q}$ for any q satisfying
$2 \leq q \leq \frac{d}{d-s}$.

Results with a single zero

Theorem (Nitzan, M.N., Powell)

Let $\frac{d}{2} \leq s \leq d$, and suppose $w \in H^{s}\left(\mathbb{T}^{d}\right)$ and w has a zero.

1. If $\frac{d}{2} \leq s<\frac{d}{2}+1$, then $u=\frac{1}{w} \notin \mathcal{M}_{2}^{q}$ for any q satisfying
$2 \leq q \leq \frac{d}{d-s}$. Conversely, for any $q>\frac{d}{d-s}$ there exists $w \in H^{s}\left(\mathbb{T}^{d}\right)$ such that w has a zero and $u=\frac{1}{w} \in \mathcal{M}_{2}^{q}$.

Results with a single zero

Theorem (Nitzan, M.N., Powell)

Let $\frac{d}{2} \leq s \leq d$, and suppose $w \in H^{s}\left(\mathbb{T}^{d}\right)$ and w has a zero.

1. If $\frac{d}{2} \leq s<\frac{d}{2}+1$, then $u=\frac{1}{w} \notin \mathcal{M}_{2}^{q}$ for any q satisfying
$2 \leq q \leq \frac{d}{d-s}$. Conversely, for any $q>\frac{d}{d-s}$ there exists $w \in H^{s}\left(\mathbb{T}^{d}\right)$ such that w has a zero and $u=\frac{1}{w} \in \mathcal{M}_{2}^{q}$.
2. If $s=\frac{d}{2}+1$, then $u=\frac{1}{w} \notin \mathcal{M}_{2}^{q}$ for any q satisfying $2 \leq q<\frac{2 d}{d-2}$.

Results with a single zero

Theorem (Nitzan, M.N., Powell)

Let $\frac{d}{2} \leq s \leq d$, and suppose $w \in H^{s}\left(\mathbb{T}^{d}\right)$ and w has a zero.

1. If $\frac{d}{2} \leq s<\frac{d}{2}+1$, then $u=\frac{1}{w} \notin \mathcal{M}_{2}^{q}$ for any q satisfying $2 \leq q \leq \frac{d}{d-s}$. Conversely, for any $q>\frac{d}{d-s}$ there exists $w \in H^{s}\left(\mathbb{T}^{d}\right)$ such that w has a zero and $u=\frac{1}{w} \in \mathcal{M}_{2}^{q}$.
2. If $s=\frac{d}{2}+1$, then $u=\frac{1}{w} \notin \mathcal{M}_{2}^{q}$ for any q satisfying $2 \leq q<\frac{2 d}{d-2}$. Conversely, there exists $w \in C^{\infty}\left(\mathbb{T}^{d}\right)$ with a zero, such that $u=1 / w \in \mathcal{M}_{2}^{q}$ for any $q>\frac{2 d}{d-2}$.

Results with a single zero

Theorem (Nitzan, M.N., Powell)

Let $\frac{d}{2} \leq s \leq d$, and suppose $w \in H^{s}\left(\mathbb{T}^{d}\right)$ and w has a zero.

1. If $\frac{d}{2} \leq s<\frac{d}{2}+1$, then $u=\frac{1}{w} \notin \mathcal{M}_{2}^{q}$ for any q satisfying
$2 \leq q \leq \frac{d}{d-s}$. Conversely, for any $q>\frac{d}{d-s}$ there exists $w \in H^{s}\left(\mathbb{T}^{d}\right)$ such that w has a zero and $u=\frac{1}{w} \in \mathcal{M}_{2}^{q}$.
2. If $s=\frac{d}{2}+1$, then $u=\frac{1}{w} \notin \mathcal{M}_{2}^{q}$ for any q satisfying $2 \leq q<\frac{2 d}{d-2}$. Conversely, there exists $w \in C^{\infty}\left(\mathbb{T}^{d}\right)$ with a zero, such that $u=1 / w \in \mathcal{M}_{2}^{q}$ for any $q>\frac{2 d}{d-2}$.

- Proof relies on Sobolev Embedding Theorem in Hölder spaces.

Results with a single zero

Theorem (Nitzan, M.N., Powell)

Let $\frac{d}{2} \leq s \leq d$, and suppose $w \in H^{s}\left(\mathbb{T}^{d}\right)$ and w has a zero.

1. If $\frac{d}{2} \leq s<\frac{d}{2}+1$, then $u=\frac{1}{w} \notin \mathcal{M}_{2}^{q}$ for any q satisfying $2 \leq q \leq \frac{d}{d-s}$. Conversely, for any $q>\frac{d}{d-s}$ there exists $w \in H^{s}\left(\mathbb{T}^{d}\right)$ such that w has a zero and $u=\frac{1}{w} \in \mathcal{M}_{2}^{q}$.
2. If $s=\frac{d}{2}+1$, then $u=\frac{1}{w} \notin \mathcal{M}_{2}^{q}$ for any q satisfying $2 \leq q<\frac{2 d}{d-2}$. Conversely, there exists $w \in C^{\infty}\left(\mathbb{T}^{d}\right)$ with a zero, such that $u=1 / w \in \mathcal{M}_{2}^{q}$ for any $q>\frac{2 d}{d-2}$.

- Proof relies on Sobolev Embedding Theorem in Hölder spaces.
- For $s>\frac{d}{2}+1$, we can't say more than the bound in part 2 unless we require a zero of a larger order.

Zero Sets of Larger Hausdorff Dimension

- We are also interested in finding a similar result when the zero set of $w=\frac{1}{u}$ has a larger Hausdorff dimension.

Zero Sets of Larger Hausdorff Dimension

- We are also interested in finding a similar result when the zero set of $w=\frac{1}{u}$ has a larger Hausdorff dimension.
- In this case, our functions may not be continuous, so we define our zero set as

$$
\Sigma(w)=\left\{x \in \mathbb{T}^{d}: \limsup _{\tau \rightarrow 0} \frac{1}{\left|B_{\tau}\right|} \int_{B_{\tau}(x)}|w(y)| d y=0\right\}
$$

Zero Sets of Larger Hausdorff Dimension

- We are also interested in finding a similar result when the zero set of $w=\frac{1}{u}$ has a larger Hausdorff dimension.
- In this case, our functions may not be continuous, so we define our zero set as

$$
\Sigma(w)=\left\{x \in \mathbb{T}^{d}: \limsup _{\tau \rightarrow 0} \frac{1}{\left|B_{\tau}\right|} \int_{B_{\tau}(x)}|w(y)| d y=0\right\}
$$

- A similar question was studied by Jiang, Lin ('03) and Schikorra ('13) with the Fourier multiplier condition replaced with an integrability condition.

Zero Sets of Larger Hausdorff Dimension

Theorem (Nitzan, M.N., Powell)

Let $0 \leq \sigma \leq d$ and $\frac{d-\sigma}{2} \leq s \leq d-\sigma$. Suppose $w \in W^{s, 2}\left(\mathbb{T}^{d}\right)$ and $\mathcal{H}^{\sigma}(\Sigma(w))>0$.

Zero Sets of Larger Hausdorff Dimension

Theorem (Nitzan, M.N., Powell)

Let $0 \leq \sigma \leq d$ and $\frac{d-\sigma}{2} \leq s \leq d-\sigma$. Suppose $w \in W^{s, 2}\left(\mathbb{T}^{d}\right)$ and $\mathcal{H}^{\sigma}(\Sigma(w))>0$.

If $\frac{d-\sigma}{2} \leq s<\min \left(d-\sigma, \frac{d}{2}+1\right)$, then $u=\frac{1}{w} \notin \mathcal{M}_{2}^{q}$ for any q satisfying $2 \leq q \leq \frac{d}{d-s-\sigma / 2}$.

Zero Sets of Larger Hausdorff Dimension

Theorem (Nitzan, M.N., Powell)

Let $0 \leq \sigma \leq d$ and $\frac{d-\sigma}{2} \leq s \leq d-\sigma$. Suppose $w \in W^{s, 2}\left(\mathbb{T}^{d}\right)$ and $\mathcal{H}^{\sigma}(\Sigma(w))>0$.

If $\frac{d-\sigma}{2} \leq s<\min \left(d-\sigma, \frac{d}{2}+1\right)$, then $u=\frac{1}{w} \notin \mathcal{M}_{2}^{q}$ for any q satisfying $2 \leq q \leq \frac{d}{d-s-\sigma / 2}$.
2. If $s=\frac{d}{2}+1 \leq d-\sigma$, then $u=\frac{1}{w} \notin \mathcal{M}_{2}^{q}$ for any q satisfying $2 \leq q<\frac{2 d}{d-2-\sigma}$.

Zero Sets of Larger Hausdorff Dimension

Theorem (Nitzan, M.N., Powell)

Let $0 \leq \sigma \leq d$ and $\frac{d-\sigma}{2} \leq s \leq d-\sigma$. Suppose $w \in W^{s, 2}\left(\mathbb{T}^{d}\right)$ and $\mathcal{H}^{\sigma}(\Sigma(w))>0$.

If $\frac{d-\sigma}{2} \leq s<\min \left(d-\sigma, \frac{d}{2}+1\right)$, then $u=\frac{1}{w} \notin \mathcal{M}_{2}^{q}$ for any q satisfying $2 \leq q \leq \frac{d}{d-s-\sigma / 2}$.
2. If $s=\frac{d}{2}+1 \leq d-\sigma$, then $u=\frac{1}{w} \notin \mathcal{M}_{2}^{q}$ for any q satisfying $2 \leq q<\frac{2 d}{d-2-\sigma}$.
3. If $s=d-\sigma<\frac{d}{2}+1$, then $u=\frac{1}{w} \notin \mathcal{M}_{2}^{q}$ for any q.

Zero Sets of Larger Hausdorff Dimension

Theorem (Nitzan, M.N., Powell)

Let $0 \leq \sigma \leq d$ and $\frac{d-\sigma}{2} \leq s \leq d-\sigma$. Suppose $w \in W^{s, 2}\left(\mathbb{T}^{d}\right)$ and $\mathcal{H}^{\sigma}(\Sigma(w))>0$.

If $\frac{d-\sigma}{2} \leq s<\min \left(d-\sigma, \frac{d}{2}+1\right)$, then $u=\frac{1}{w} \notin \mathcal{M}_{2}^{q}$ for any q satisfying $2 \leq q \leq \frac{d}{d-s-\sigma / 2}$.
2. If $s=\frac{d}{2}+1 \leq d-\sigma$, then $u=\frac{1}{w} \notin \mathcal{M}_{2}^{q}$ for any q satisfying $2 \leq q<\frac{2 d}{d-2-\sigma}$.
3. If $s=d-\sigma<\frac{d}{2}+1$, then $u=\frac{1}{w} \notin \mathcal{M}_{2}^{q}$ for any q.

- Part 3 is sharp, but parts 1 and 2 likely are not.

Zero Sets of Larger Hausdorff Dimension

Theorem (Nitzan, M.N., Powell)

Let $0 \leq \sigma \leq d$ and $\frac{d-\sigma}{2} \leq s \leq d-\sigma$. Suppose $w \in W^{s, 2}\left(\mathbb{T}^{d}\right)$ and $\mathcal{H}^{\sigma}(\Sigma(w))>0$.

If $\frac{d-\sigma}{2} \leq s<\min \left(d-\sigma, \frac{d}{2}+1\right)$, then $u=\frac{1}{w} \notin \mathcal{M}_{2}^{q}$ for any q satisfying $2 \leq q \leq \frac{d}{d-s-\sigma / 2}$.
2. If $s=\frac{d}{2}+1 \leq d-\sigma$, then $u=\frac{1}{w} \notin \mathcal{M}_{2}^{q}$ for any q satisfying $2 \leq q<\frac{2 d}{d-2-\sigma}$.
3. If $s=d-\sigma<\frac{d}{2}+1$, then $u=\frac{1}{w} \notin \mathcal{M}_{2}^{q}$ for any q.

- Part 3 is sharp, but parts 1 and 2 likely are not.
- Based on the results of Jiang, Lin ('03) and Schikorra ('13), I (we?) conjecture that part 1 holds with $2 \leq q \leq \frac{d-\sigma}{d-\sigma-s}$.

Zero Sets of Larger Hausdorff Dimension

Theorem (Nitzan, M.N., Powell)

Let $0 \leq \sigma \leq d$ and $\frac{d-\sigma}{2} \leq s \leq d-\sigma$. Suppose $w \in W^{s, 2}\left(\mathbb{T}^{d}\right)$ and $\mathcal{H}^{\sigma}(\Sigma(w))>0$.

If $\frac{d-\sigma}{2} \leq s<\min \left(d-\sigma, \frac{d}{2}+1\right)$, then $u=\frac{1}{w} \notin \mathcal{M}_{2}^{q}$ for any q satisfying $2 \leq q \leq \frac{d}{d-s-\sigma / 2}$.
2. If $s=\frac{d}{2}+1 \leq d-\sigma$, then $u=\frac{1}{w} \notin \mathcal{M}_{2}^{q}$ for any q satisfying $2 \leq q<\frac{2 d}{d-2-\sigma}$.
3. If $s=d-\sigma<\frac{d}{2}+1$, then $u=\frac{1}{w} \notin \mathcal{M}_{2}^{q}$ for any q.

- Part 3 is sharp, but parts 1 and 2 likely are not.
- Based on the results of Jiang, Lin ('03) and Schikorra ('13), I (we?) conjecture that part 1 holds with $2 \leq q \leq \frac{d-\sigma}{d-\sigma-s}$.
- Proof uses a version of Poincare Inequality from Jiang, Lin ('03) and Schikorra ('13).

Extensions

We have a few variations of these multiplier results

Extensions

We have a few variations of these multiplier results

- Multipliers in \mathcal{M}_{p}^{q} for certain ranges of p and q.

Extensions

We have a few variations of these multiplier results

- Multipliers in \mathcal{M}_{p}^{q} for certain ranges of p and q.
- Matrix-weights where $W(x)$ is a $K \times K$ matrix

Extensions

We have a few variations of these multiplier results

- Multipliers in \mathcal{M}_{p}^{q} for certain ranges of p and q.
- Matrix-weights where $W(x)$ is a $K \times K$ matrix
- Nonsymmetric verisons where the Sobolev smoothness is different in different axis directions.

Table of Contents

Exponentials in Weighted Spaces

Restrictions on Fourier Multipliers

Applications to Balian-Low Type Theorems

The Balian-Low Theorem

Theorem (Battle ('88) Daubechies, Coifman, Semmes ('90))

Let $f \in L^{2}(\mathbb{R})$. If $\mathcal{G}(f)=\left\{e^{2 \pi i m x} f(x-n)\right\}_{m, n \in \mathbb{Z}}$ is a Riesz basis for $L^{2}(\mathbb{R})$, then

$$
\left(\int_{\mathbb{R}}|x|^{2}|f(x)|^{2} d x\right)\left(\int_{\mathbb{R}}|\xi|^{2}|\widehat{f}(\xi)|^{2} d \xi\right)=\infty
$$

The Balian-Low Theorem

Theorem (Battle ('88) Daubechies, Coifman, Semmes ('90))

Let $f \in L^{2}(\mathbb{R})$. If $\mathcal{G}(f)=\left\{e^{2 \pi i m x} f(x-n)\right\}_{m, n \in \mathbb{Z}}$ is a Riesz basis for $L^{2}(\mathbb{R})$, then

$$
\left(\int_{\mathbb{R}}|x|^{2}|f(x)|^{2} d x\right)\left(\int_{\mathbb{R}}|\xi|^{2}|\widehat{f}(\xi)|^{2} d \xi\right)=\infty
$$

- Conclusion rephrased: "either $f \notin H^{1}(\mathbb{R})$ or $\widehat{f} \notin H^{1}(\mathbb{R})$."

The Balian-Low Theorem

Theorem (Battle ('88) Daubechies, Coifman, Semmes ('90))

Let $f \in L^{2}(\mathbb{R})$. If $\mathcal{G}(f)=\left\{e^{2 \pi i m x} f(x-n)\right\}_{m, n \in \mathbb{Z}}$ is a Riesz basis for $L^{2}(\mathbb{R})$, then

$$
\left(\int_{\mathbb{R}}|x|^{2}|f(x)|^{2} d x\right)\left(\int_{\mathbb{R}}|\xi|^{2}|\widehat{f}(\xi)|^{2} d \xi\right)=\infty
$$

- Conclusion rephrased: "either $f \notin H^{1}(\mathbb{R})$ or $\widehat{f} \notin H^{1}(\mathbb{R})$."
- Assume $f, \widehat{f} \in H^{1}(\mathbb{R})$. Smoothness passed to $Z f \in H_{l o c}^{1}\left(\mathbb{R}^{2}\right)$.

The Balian-Low Theorem

Theorem (Battle ('88) Daubechies, Coifman, Semmes ('90))

Let $f \in L^{2}(\mathbb{R})$. If $\mathcal{G}(f)=\left\{e^{2 \pi i m x} f(x-n)\right\}_{m, n \in \mathbb{Z}}$ is a Riesz basis for $L^{2}(\mathbb{R})$, then

$$
\left(\int_{\mathbb{R}}|x|^{2}|f(x)|^{2} d x\right)\left(\int_{\mathbb{R}}|\xi|^{2}|\widehat{f}(\xi)|^{2} d \xi\right)=\infty
$$

- Conclusion rephrased: "either $f \notin H^{1}(\mathbb{R})$ or $\widehat{f} \notin H^{1}(\mathbb{R})$."
- Assume $f, \widehat{f} \in H^{1}(\mathbb{R})$. Smoothness passed to $Z f \in H_{l o c}^{1}\left(\mathbb{R}^{2}\right)$.
- Quasiperiodicity of $Z f$ forces it to have a (essential) zero.

The Balian-Low Theorem

Theorem (Battle ('88) Daubechies, Coifman, Semmes ('90))

Let $f \in L^{2}(\mathbb{R})$. If $\mathcal{G}(f)=\left\{e^{2 \pi i m x} f(x-n)\right\}_{m, n \in \mathbb{Z}}$ is a Riesz basis for $L^{2}(\mathbb{R})$, then

$$
\left(\int_{\mathbb{R}}|x|^{2}|f(x)|^{2} d x\right)\left(\int_{\mathbb{R}}|\xi|^{2}|\widehat{f}(\xi)|^{2} d \xi\right)=\infty
$$

- Conclusion rephrased: "either $f \notin H^{1}(\mathbb{R})$ or $\widehat{f} \notin H^{1}(\mathbb{R})$."
- Assume $f, \widehat{f} \in H^{1}(\mathbb{R})$. Smoothness passed to $Z f \in H_{l o c}^{1}\left(\mathbb{R}^{2}\right)$.
- Quasiperiodicity of $Z f$ forces it to have a (essential) zero.
- The Riesz basis property forces $|Z f| \geq A>0$, which gives contradiction.

Sharp $\left(C_{q}\right)$-system BLT

Theorem (Nitzan, M.N, Powell)

Fix $q>2$. If $\mathcal{G}(f, 1,1)=\left\{e^{2 \pi i m x} f(x-n)\right\}_{m, n \in \mathbb{Z}}$ is an exact $\left(C_{q}\right)$-system for $L^{2}(\mathbb{R})$, then

$$
\begin{equation*}
\left(\int_{\mathbb{R}}|x|^{4(1-1 / q)}|f(x)|^{2} d x\right)\left(\int_{\mathbb{R}}|\xi|^{4(1-1 / q)}|\widehat{f}(\xi)|^{2} d \xi\right)=\infty . \tag{1}
\end{equation*}
$$

Equivalently, either $f \notin H^{2(1-1 / q)}(\mathbb{R})$ or $\widehat{f} \notin H^{2(1-1 / q)}(\mathbb{R})$.

Sharp $\left(C_{q}\right)$-system BLT

Theorem (Nitzan, M.N, Powell)
Fix $q>2$. If $\mathcal{G}(f, 1,1)=\left\{e^{2 \pi i m x} f(x-n)\right\}_{m, n \in \mathbb{Z}}$ is an exact $\left(C_{q}\right)$-system for $L^{2}(\mathbb{R})$, then

$$
\begin{equation*}
\left(\int_{\mathbb{R}}|x|^{4(1-1 / q)}|f(x)|^{2} d x\right)\left(\int_{\mathbb{R}}|\xi|^{4(1-1 / q)}|\widehat{f}(\xi)|^{2} d \xi\right)=\infty . \tag{1}
\end{equation*}
$$

Equivalently, either $f \notin H^{2(1-1 / q)}(\mathbb{R})$ or $\widehat{f} \notin H^{2(1-1 / q)}(\mathbb{R})$.

- Follows from single zero multiplier result.

Sharp $\left(C_{q}\right)$-system BLT

Theorem (Nitzan, M.N, Powell)

Fix $q>2$. If $\mathcal{G}(f, 1,1)=\left\{e^{2 \pi i m x} f(x-n)\right\}_{m, n \in \mathbb{Z}}$ is an exact $\left(C_{q}\right)$-system for $L^{2}(\mathbb{R})$, then

$$
\begin{equation*}
\left(\int_{\mathbb{R}}|x|^{4(1-1 / q)}|f(x)|^{2} d x\right)\left(\int_{\mathbb{R}}|\xi|^{4(1-1 / q)}|\widehat{f}(\xi)|^{2} d \xi\right)=\infty . \tag{1}
\end{equation*}
$$

Equivalently, either $f \notin H^{2(1-1 / q)}(\mathbb{R})$ or $\widehat{f} \notin H^{2(1-1 / q)}(\mathbb{R})$.

- Follows from single zero multiplier result.
- Nitzan, Olsen ('11) proved similar result, with an additional ϵ on the weight, as well as non-symmetric versions.

Sharp $\left(C_{q}\right)$-system BLT

Theorem (Nitzan, M.N, Powell)

Fix $q>2$. If $\mathcal{G}(f, 1,1)=\left\{e^{2 \pi i m x} f(x-n)\right\}_{m, n \in \mathbb{Z}}$ is an exact $\left(C_{q}\right)$-system for $L^{2}(\mathbb{R})$, then

$$
\begin{equation*}
\left(\int_{\mathbb{R}}|x|^{4(1-1 / q)}|f(x)|^{2} d x\right)\left(\int_{\mathbb{R}}|\xi|^{4(1-1 / q)}|\widehat{f}(\xi)|^{2} d \xi\right)=\infty . \tag{1}
\end{equation*}
$$

Equivalently, either $f \notin H^{2(1-1 / q)}(\mathbb{R})$ or $\widehat{f} \notin H^{2(1-1 / q)}(\mathbb{R})$.

- Follows from single zero multiplier result.
- Nitzan, Olsen ('11) proved similar result, with an additional ϵ on the weight, as well as non-symmetric versions.
- The $q=\infty$ case gives the BLT for exact systems (originally due to Daubechies, Janssen ('93)) and nonsymmetric versions were given by Heil and Powell ('09)

Shift-Invariant Spaces with Extra Invariance

For a given shift-invariant space $V=V(f) \subset L^{2}\left(\mathbb{R}^{d}\right)$,

Shift-Invariant Spaces with Extra Invariance

For a given shift-invariant space $V=V(f) \subset L^{2}\left(\mathbb{R}^{d}\right)$,

- For $\Gamma \subset \mathbb{R}^{d}, V$ is Γ-invariant if $T_{\gamma} V \subset V$ for all $\gamma \in \Gamma$.
- For any lattice $\Gamma \supset \mathbb{Z}^{d}$, there exists $f \in L^{2}\left(\mathbb{R}^{d}\right)$ such that $V(f)$ is precisely Γ-invariant
- $d=1$ by Aldroubi, Cabrelli, Heil, Kornelson, Molter (2010)
- $d>1$ by Anastasio, Cabrelli, Paternostro (2011)

Shift-Invariant Spaces with Extra Invariance

For a given shift-invariant space $V=V(f) \subset L^{2}\left(\mathbb{R}^{d}\right)$,

- For $\Gamma \subset \mathbb{R}^{d}, V$ is Γ-invariant if $T_{\gamma} V \subset V$ for all $\gamma \in \Gamma$.
- For any lattice $\Gamma \supset \mathbb{Z}^{d}$, there exists $f \in L^{2}\left(\mathbb{R}^{d}\right)$ such that $V(f)$ is precisely Γ-invariant
- $d=1$ by Aldroubi, Cabrelli, Heil, Kornelson, Molter (2010)
- $d>1$ by Anastasio, Cabrelli, Paternostro (2011)
- Aldroubi, Sun, Wang (2011), and Tessera, Wang (2014), showed that Balian-Low type results exist for shift-invariant spaces with extra-invariance.

$\left(C_{q}\right)$-system SIS BLT

Theorem (Nitzan, M.N., Powell)

Fix $2 \leq q \leq \infty$. Suppose that $f \in L^{2}(\mathbb{R})$ is nonzero and $V(f)$ is $\frac{1}{N} \mathbb{Z}$-invariant. If $T(f)$ is a minimal $\left(C_{q}\right)$-system in $V(f)$, then

$$
\int_{\mathbb{R}}|x|^{2(1-1 / q)}|f(x)|^{2} d x=\infty
$$

Equivalently, $\widehat{f} \notin H^{1-1 / q}(\mathbb{R})$.

- If $T(f)$ is a minimal system for $V(f)$, then $T(f)$ is a $\left(C_{\infty}\right)$-system. Thus, the $q=\infty$ case gives us a result for minimal systems.
- (Hardin, M.N., Powell) In the $q=2$ case, the result holds in higher dimensions, and without assuming minimality. (i.e., frames and not necessarily Riesz bases)

Minimal $\left(C_{q}\right)$-result Higher Dimensions

Theorem

Fix q such that $2 \leq q \leq \infty$, and let $s=\min \left(d\left(\frac{1}{2}-\frac{1}{q}\right)+\frac{1}{2}, 1\right)$. Let $0 \neq f \in L^{2}\left(\mathbb{R}^{d}\right)$, and suppose $V(f)$ is invariant under some non-integer shift. If $\mathcal{T}(f)$ is a minimal $\left(C_{q}\right)$-system for $V(f)$ then

$$
\int_{\mathbb{R}^{d}}|x|^{2 s}|f(x)|^{2} d x=\infty
$$

Minimal $\left(C_{q}\right)$-result Higher Dimensions

Theorem

Fix q such that $2 \leq q \leq \infty$, and let $s=\min \left(d\left(\frac{1}{2}-\frac{1}{q}\right)+\frac{1}{2}, 1\right)$. Let $0 \neq f \in L^{2}\left(\mathbb{R}^{d}\right)$, and suppose $V(f)$ is invariant under some non-integer shift. If $\mathcal{T}(f)$ is a minimal $\left(C_{q}\right)$-system for $V(f)$ then

$$
\int_{\mathbb{R}^{d}}|x|^{2 s}|f(x)|^{2} d x=\infty
$$

- Can be extended to finitely many generators, requires a matrix-weight version of the Fourier multiplier results.

Minimal $\left(C_{q}\right)$-result Higher Dimensions

Theorem

Fix q such that $2 \leq q \leq \infty$, and let $s=\min \left(d\left(\frac{1}{2}-\frac{1}{q}\right)+\frac{1}{2}, 1\right)$. Let $0 \neq f \in L^{2}\left(\mathbb{R}^{d}\right)$, and suppose $V(f)$ is invariant under some non-integer shift. If $\mathcal{T}(f)$ is a minimal $\left(C_{q}\right)$-system for $V(f)$ then

$$
\int_{\mathbb{R}^{d}}|x|^{2 s}|f(x)|^{2} d x=\infty
$$

- Can be extended to finitely many generators, requires a matrix-weight version of the Fourier multiplier results.
- Probably the sharp s is $1-1 / q$ in all dimensions.

Where does the zero come from?

- Extra-invarance can be characterized in terms of $P \widehat{f}$. (Aldroubi, Cabrelli, Heil, Kornelson, Molter (2010), Anastasio, Cabrelli, Paternostro (2011))

Where does the zero come from?

- Extra-invarance can be characterized in terms of $P \widehat{f}$. (Aldroubi, Cabrelli, Heil, Kornelson, Molter (2010), Anastasio, Cabrelli, Paternostro (2011))
- The condition is somewhat technical, so lets look at an example of $f \in L^{2}\left(\mathbb{R}^{2}\right)$ and $V(f)$ having $\frac{1}{2} \mathbb{Z}^{2}$-invariance.

Where does the zero come from?

- Extra-invarance can be characterized in terms of $P \widehat{f}$. (Aldroubi, Cabrelli, Heil, Kornelson, Molter (2010), Anastasio, Cabrelli, Paternostro (2011))
- The condition is somewhat technical, so lets look at an example of $f \in L^{2}\left(\mathbb{R}^{2}\right)$ and $V(f)$ having $\frac{1}{2} \mathbb{Z}^{2}$-invariance.

$$
\begin{aligned}
P(x)= & \sum_{k \in \mathbb{Z}^{2}}|\widehat{f}(x-k)|^{2} \\
= & \sum_{k \in \mathbb{Z}^{2}}|\widehat{f}(x-2 k)|^{2}+\sum_{k \in \mathbb{Z}^{2}}\left|\widehat{f}\left(x-2 k+e_{1}\right)\right|^{2} \\
& +\sum_{k \in \mathbb{Z}^{2}}\left|\widehat{f}\left(x-2 k+e_{2}\right)\right|^{2}+\sum_{k \in \mathbb{Z}^{2}}\left|\widehat{f}\left(x-2 k+e_{1}+e_{2}\right)\right|^{2} \\
= & P_{2}(x)+P_{2}\left(x+e_{1}\right)+P_{2}\left(x+e_{2}\right)+P_{2}\left(x+e_{1}+e_{2}\right) .
\end{aligned}
$$

Where does the zero come from?

- Extra-invarance can be characterized in terms of $P \widehat{f}$. (Aldroubi, Cabrelli, Heil, Kornelson, Molter (2010), Anastasio, Cabrelli, Paternostro (2011))
- The condition is somewhat technical, so lets look at an example of $f \in L^{2}\left(\mathbb{R}^{2}\right)$ and $V(f)$ having $\frac{1}{2} \mathbb{Z}^{2}$-invariance.

$$
\begin{aligned}
P(x)= & \sum_{k \in \mathbb{Z}^{2}}|\widehat{f}(x-k)|^{2} \\
= & \sum_{k \in \mathbb{Z}^{2}}|\widehat{f}(x-2 k)|^{2}+\sum_{k \in \mathbb{Z}^{2}}\left|\widehat{f}\left(x-2 k+e_{1}\right)\right|^{2} \\
& +\sum_{k \in \mathbb{Z}^{2}}\left|\widehat{f}\left(x-2 k+e_{2}\right)\right|^{2}+\sum_{k \in \mathbb{Z}^{2}}\left|\widehat{f}\left(x-2 k+e_{1}+e_{2}\right)\right|^{2} \\
= & P_{2}(x)+P_{2}\left(x+e_{1}\right)+P_{2}\left(x+e_{2}\right)+P_{2}\left(x+e_{1}+e_{2}\right) .
\end{aligned}
$$

- $V(f)$ is $\frac{1}{2} \mathbb{Z}^{2}$-invariant iff $P_{2}(x)$ and it's shifts have disjoint support.

Thanks

Thanks!!!

