Uncertainty Principles for Fourier Multipliers

Michael Northington V

School of Mathematics Georgia Tech

6/6/2018

With Shahaf Nitzan (Ga Tech) and Alex Powell (Vanderbilt)

Uncertainty Principles for Fourier Multipliers

Table of Contents

Exponentials in Weighted Spaces

Restrictions on Fourier Multipliers

Applications to Balian-Low Type Theorems

Uncertainty Principles for Fourier Multipliers

Let
$$E = E(d) = \left\{ e^{2\pi i k \cdot x} \right\}_{k \in \mathbb{Z}^d}$$
.

Uncertainty Principles for Fourier Multipliers

Let
$$E = E(d) = \left\{ e^{2\pi i k \cdot x} \right\}_{k \in \mathbb{Z}^d}$$
.

• *E* is an orthonormal basis for $L^2(\mathbb{T}^d) = L^2(\mathbb{R}^d/\mathbb{Z}^d)$.

Uncertainty Principles for Fourier Multipliers

Let
$$E = E(d) = \left\{ e^{2\pi i k \cdot x} \right\}_{k \in \mathbb{Z}^d}$$
.

- E is an orthonormal basis for $L^2(\mathbb{T}^d) = L^2(\mathbb{R}^d/\mathbb{Z}^d)$.
- For a weight w satisfying w(x) > 0 almost everywhere, consider L²_w(T^d) with norm,

$$||g||^2_{L^2_w(\mathbb{T}^d)} = \int_{\mathbb{T}^d} |g(x)|^2 w(x) dx.$$

Let
$$E = E(d) = \left\{ e^{2\pi i k \cdot x} \right\}_{k \in \mathbb{Z}^d}$$
.

- E is an orthonormal basis for $L^2(\mathbb{T}^d) = L^2(\mathbb{R}^d/\mathbb{Z}^d)$.
- For a weight w satisfying w(x) > 0 almost everywhere, consider L²_w(T^d) with norm,

$$||g||^2_{L^2_w(\mathbb{T}^d)} = \int_{\mathbb{T}^d} |g(x)|^2 w(x) dx.$$

► Question 1: What basis properties does E have in L²_w(T^d) and can these be characterized in terms of w?

Uncertainty Principles for Fourier Multipliers

Let
$$E = E(d) = \left\{ e^{2\pi i k \cdot x} \right\}_{k \in \mathbb{Z}^d}$$
.

- E is an orthonormal basis for $L^2(\mathbb{T}^d) = L^2(\mathbb{R}^d/\mathbb{Z}^d)$.
- For a weight w satisfying w(x) > 0 almost everywhere, consider L²_w(T^d) with norm,

$$||g||^2_{L^2_w(\mathbb{T}^d)} = \int_{\mathbb{T}^d} |g(x)|^2 w(x) dx.$$

- ► Question 1: What basis properties does E have in L²_w(T^d) and can these be characterized in terms of w?
- Question 2: Why do we care about this setting?

• Gabor System: For $g \in L^2(\mathbb{R})$,

$$G(g) := \{e^{2\pi i m x} g(x-n)\}_{m,n \in \mathbb{Z}} = \{M_m T_n g\}_{m,n \in \mathbb{Z}}$$

Uncertainty Principles for Fourier Multipliers

• Gabor System: For $g \in L^2(\mathbb{R})$,

 $G(g) := \{e^{2\pi i m x} g(x-n)\}_{m,n \in \mathbb{Z}} = \{M_m T_n g\}_{m,n \in \mathbb{Z}}$

► Zak Transform: $Zg(x,y) := \sum_{k \in \mathbb{Z}} g(x-k)e^{2\pi i k y}$

• Gabor System: For $g \in L^2(\mathbb{R})$,

$$G(g) := \{e^{2\pi i m x} g(x-n)\}_{m,n \in \mathbb{Z}} = \{M_m T_n g\}_{m,n \in \mathbb{Z}}$$

► Zak Transform: $Zg(x,y) := \sum_{k \in \mathbb{Z}} g(x-k)e^{2\pi i k y}$

Converts TF-shifts to exponentials:

$$Z(M_m T_n g) = e^{2\pi i (mx - ny)} Zg$$
$$Z(G(g)) = \{e^{2\pi i (mx - ny)} Z(g)\}_{n,m \in \mathbb{Z}}$$

Uncertainty Principles for Fourier Multipliers

• Gabor System: For $g \in L^2(\mathbb{R})$,

$$G(g) := \{e^{2\pi i m x} g(x-n)\}_{m,n \in \mathbb{Z}} = \{M_m T_n g\}_{m,n \in \mathbb{Z}}$$

► Zak Transform: $Zg(x,y) := \sum_{k \in \mathbb{Z}} g(x-k)e^{2\pi i k y}$

Converts TF-shifts to exponentials:

$$Z(M_m T_n g) = e^{2\pi i (mx - ny)} Zg$$
$$Z(G(g)) = \{e^{2\pi i (mx - ny)} Z(g)\}_{n,m \in \mathbb{Z}}$$

► Leads to an isometric isomorphism: ► $L^2(\mathbb{R}) \to L^2_w(\mathbb{T}^2)$, for $w = |Zg|^2$ ► $G(g) \to E = E(2)$.

Uncertainty Principles for Fourier Multipliers

▶ Integer Translates: For $f \in L^2(\mathbb{R}^d)$, $T(f) = \{f(\cdot - l)\}_{l \in \mathbb{Z}^d}$

Uncertainty Principles for Fourier Multipliers

- ▶ Integer Translates: For $f \in L^2(\mathbb{R}^d)$, $T(f) = \{f(\cdot l)\}_{l \in \mathbb{Z}^d}$ ▶ Shift-Invariant Space: $V(f) = \overline{\text{span}(T(f))}^{L^2(\mathbb{R}^d)}$

- ▶ Integer Translates: For $f \in L^2(\mathbb{R}^d)$, $T(f) = \{f(\cdot l)\}_{l \in \mathbb{Z}^d}$
- ► Shift-Invariant Space: $V(f) = \overline{\text{span}(T(f))}^{L^2(\mathbb{R}^d)}$
- Periodization: $P\widehat{f}(\xi) = \sum_{k \in \mathbb{Z}^d} |\widehat{f}(\xi k)|^2$

- ▶ Integer Translates: For $f \in L^2(\mathbb{R}^d)$, $T(f) = \{f(\cdot l)\}_{l \in \mathbb{Z}^d}$
- ► Shift-Invariant Space: $V(f) = \overline{\text{span}(T(f))}^{L^2(\mathbb{R}^d)}$
- Periodization: $P\widehat{f}(\xi) = \sum_{k \in \mathbb{Z}^d} |\widehat{f}(\xi k)|^2$
- If $h \in V(f)$, there exists a \mathbb{Z}^d -periodic m, so that $\widehat{h} = m\widehat{f}$.

- ▶ Integer Translates: For $f \in L^2(\mathbb{R}^d)$, $T(f) = \{f(\cdot l)\}_{l \in \mathbb{Z}^d}$
- ► Shift-Invariant Space: $V(f) = \overline{\text{span}(T(f))}^{L^2(\mathbb{R}^d)}$
- Periodization: $P\widehat{f}(\xi) = \sum_{k \in \mathbb{Z}^d} |\widehat{f}(\xi k)|^2$
- If $h \in V(f)$, there exists a \mathbb{Z}^d -periodic m, so that $\widehat{h} = m\widehat{f}$.
- Leads to an isometric isomorphism:

•
$$V(f) \to L^2_w(\mathbb{T}^d)$$
, for $w = P\widehat{f}$

▶
$$h \to m$$

 ${}\blacktriangleright \ T(f) \to E = E(d)$

Uncertainty Principles for Fourier Multipliers

- *H* is complete if span $\overline{H} = \mathcal{H}$.
- ► H is a frame if it's complete, and there exist constants 0 < A ≤ B < ∞ with</p>

$$\forall h \in \mathcal{H}, \quad A \|h\|_{\mathcal{H}}^2 \le \sum_{n=1}^{\infty} |\langle h, h_n \rangle|^2 \le B \|h\|_{\mathcal{H}}^2.$$

Frame

Complete

- *H* is complete if span $\overline{H} = \mathcal{H}$.
- ► H is a frame if it's complete, and there exist constants 0 < A ≤ B < ∞ with</p>

$$\forall h \in \mathcal{H}, \quad A \|h\|_{\mathcal{H}}^2 \le \sum_{n=1}^{\infty} |\langle h, h_n \rangle|^2 \le B \|h\|_{\mathcal{H}}^2.$$

• Every frame is complete, with the additional bonus that there exist a choice of coefficients such that $h = \sum c_n h_n$ with

$$\|c_n\|_{l^2} \asymp \|h\|_{\mathcal{H}}.$$

Frame

Complete

• H is a minimal system if for each n,

$$h_n \notin \overline{\operatorname{span}\{h_m : m \neq n\}}.$$

• H is a minimal system if for each n,

 $h_n \notin \overline{\operatorname{span}\{h_m : m \neq n\}}.$

• *H* is exact if it is complete and minimal.

• H is a minimal system if for each n,

 $h_n \notin \overline{\operatorname{span}\{h_m : m \neq n\}}.$

• *H* is exact if it is complete and minimal.

► H is a Riesz basis if there is an orthonormal basis {e_n}_{n=1}[∞] and a bounded invertible operator T on H such that

$$Te_n = h_n.$$

• *H* is a minimal system if for each *n*,

 $h_n \notin \overline{\operatorname{span}\{h_m : m \neq n\}}.$

• *H* is exact if it is complete and minimal.

► H is a Riesz basis if there is an orthonormal basis {e_n}_{n=1}[∞] and a bounded invertible operator T on H such that

$$Te_n = h_n.$$

 Riesz basis ⇒ frame; Riesz basis ⇔ minimal frame.

Uncertainty Principles for Fourier Multipliers

• Fix $2 \le q \le \infty$. $\{h_n\}_{n=1}^{\infty} \subset \mathcal{H}$ is a (C_q) -system if for each $h \in \mathcal{H}$, h can be approximated to arbitrary accuracy by a finite sum $\sum a_n h_n$ such that

 $||a_n||_{l^q} \le C ||h||_{\mathcal{H}}.$

Uncertainty Principles for Fourier Multipliers

• Fix $2 \le q \le \infty$. $\{h_n\}_{n=1}^{\infty} \subset \mathcal{H}$ is a (C_q) -system if for each $h \in \mathcal{H}$, h can be approximated to arbitrary accuracy by a finite sum $\sum a_n h_n$ such that

 $||a_n||_{l^q} \le C ||h||_{\mathcal{H}}.$

• Equivalently, $\{h_n\}_{n=1}^{\infty}$ is a (C_q) -system if and only if

$$\|h\|_{\mathcal{H}} \le C \left(\sum_{n=1}^{\infty} |\langle h, h_n \rangle|^{q'}\right)^{1/q'}$$

Uncertainty Principles for Fourier Multipliers

• Fix $2 \le q \le \infty$. $\{h_n\}_{n=1}^{\infty} \subset \mathcal{H}$ is a (C_q) -system if for each $h \in \mathcal{H}$, h can be approximated to arbitrary accuracy by a finite sum $\sum a_n h_n$ such that

 $||a_n||_{l^q} \le C ||h||_{\mathcal{H}}.$

• Equivalently, $\{h_n\}_{n=1}^{\infty}$ is a (C_q) -system if and only if

$$\|h\|_{\mathcal{H}} \le C \left(\sum_{n=1}^{\infty} |\langle h, h_n \rangle|^{q'}\right)^{1/q'}$$

• (C_q) stands for completeness with l^q control of coefficients.

Uncertainty Principles for Fourier Multipliers

• Fix $2 \le q \le \infty$. $\{h_n\}_{n=1}^{\infty} \subset \mathcal{H}$ is a (C_q) -system if for each $h \in \mathcal{H}$, h can be approximated to arbitrary accuracy by a finite sum $\sum a_n h_n$ such that

 $||a_n||_{l^q} \le C ||h||_{\mathcal{H}}.$

• Equivalently, $\{h_n\}_{n=1}^{\infty}$ is a (C_q) -system if and only if

$$\|h\|_{\mathcal{H}} \le C \left(\sum_{n=1}^{\infty} |\langle h, h_n \rangle|^{q'}\right)^{1/q}$$

(Cq) stands for completeness with l^q control of coefficients.
 Bessel (C2)-system ⇐⇒ frame

• Fix $2 \le q \le \infty$. $\{h_n\}_{n=1}^{\infty} \subset \mathcal{H}$ is a (C_q) -system if for each $h \in \mathcal{H}$, h can be approximated to arbitrary accuracy by a finite sum $\sum a_n h_n$ such that

 $||a_n||_{l^q} \le C ||h||_{\mathcal{H}}.$

• Equivalently, $\{h_n\}_{n=1}^{\infty}$ is a (C_q) -system if and only if

$$\|h\|_{\mathcal{H}} \le C \left(\sum_{n=1}^{\infty} |\langle h, h_n \rangle|^{q'}\right)^{1/q'}$$

- (C_q) stands for completeness with l^q control of coefficients.
- ▶ Bessel (C_2) -system \iff frame
- $\blacktriangleright \ (C_q) \text{-system} \implies (C_{q'}) \text{-system for all } q' \geq q$

Uncertainty Principles for Fourier Multipliers

(C_q) -systems

(C_q) -systems

Uncertainty Principles for Fourier Multipliers

What is known about basis properties of E in $L^2_w(\mathbb{T}^d)$?

Property	Characterization
Riesz Basis	$\exists 0 < A \leq B < \infty$ such that
	$A \leq w(x) \leq B$, for a.e. x

What is known about basis properties of E in $L^2_w(\mathbb{T}^d)$?

Property	Characterization
Riesz Basis	$\exists 0 < A \leq B < \infty$ such that $A \leq w(x) \leq B$, for a.e. x
Frame	For $S = \{x : w(x) > 0\},\$ $w \in L^{\infty}(\mathbb{T}^d), w^{-1} \in L^{\infty}(S)$

Uncertainty Principles for Fourier Multipliers

What is known about basis properties of E in $L^2_w(\mathbb{T}^d)$?

Property	Characterization
Riesz Basis	$\exists 0 < A \leq B < \infty$ such that
	$A \leq w(x) \leq B$, for a.e. x
Frame	For $S = \{x : w(x) > 0\}$,
	$w \in L^{\infty}(\mathbb{T}^{\tilde{d}}), w^{-1} \in L^{\infty}(S)$
Minimal System	$w^{-1} \in L^1(\mathbb{T}^d)$

What is known about basis properties of E in $L^2_w(\mathbb{T}^d)$?

Property	Characterization
Riesz Basis	$\exists 0 < A \leq B < \infty$ such that
	$A \leq w(x) \leq B$, for a.e. x
Frame	For $S = \{x : w(x) > 0\}$,
	$w\in L^\infty(\mathbb{T}^d)$, $w^{-1}\in L^\infty(S)$
Minimal System	$w^{-1} \in L^1(\mathbb{T}^d)$
Exact (C_q) -system	$w^{-1/2} \in \mathcal{M}_2^q$

Uncertainty Principles for Fourier Multipliers

What is known about basis properties of E in $L^2_w(\mathbb{T}^d)$?

Property	Characterization
Riesz Basis	$\exists 0 < A \leq B < \infty$ such that
	$A \leq w(x) \leq B$, for a.e. x
Frame	For $S = \{x : w(x) > 0\}$,
	$w \in L^{\infty}(\mathbb{T}^d)$, $w^{-1} \in L^{\infty}(S)$
Minimal System	$w^{-1} \in L^1(\mathbb{T}^d)$
Exact (C_q) -system	$w^{-1/2} \in \mathcal{M}_2^q$

 The first 3 are well known: de Boor, DeVore, Ron ('92), Ron, Shen ('95), Bownik ('00)

Uncertainty Principles for Fourier Multipliers

What is known about basis properties of E in $L^2_w(\mathbb{T}^d)$?

Property	Characterization
Riesz Basis	$\exists 0 < A \leq B < \infty$ such that
	$A \leq w(x) \leq B$, for a.e. x
Frame	For $S = \{x : w(x) > 0\}$,
	$w \in L^{\infty}(\mathbb{T}^d)$, $w^{-1} \in L^{\infty}(S)$
Minimal System	$w^{-1} \in L^1(\mathbb{T}^d)$
Exact (C_q) -system	$w^{-1/2} \in \mathcal{M}_2^q$

- The first 3 are well known: de Boor, DeVore, Ron ('92), Ron, Shen ('95), Bownik ('00)
- Nitzan, Olsen ('11) gave necessary and sufficient conditions similar to the fourth characterization

Uncertainty Principles for Fourier Multipliers

Uncertainty Principles for Fourier Multipliers

For a periodic function u and a finite sequence c = {c_n}_{n∈Z^d}, define T_u by Î_uc = uĉ.

- For a periodic function u and a finite sequence c = {c_n}_{n∈Z^d}, define T_u by Î_uc = uĉ.
- Then, $u \in \mathcal{M}_2^q$, if for all such c,

$$||T_u c||_{l^q(\mathbb{Z}^d)} \le C ||c||_{l^2(\mathbb{Z}^d)}$$

- For a periodic function u and a finite sequence c = {c_n}_{n∈Z^d}, define T_u by f_{uc} = uĉ.
- Then, $u \in \mathcal{M}_2^q$, if for all such c,

$$||T_u c||_{l^q(\mathbb{Z}^d)} \le C ||c||_{l^2(\mathbb{Z}^d)}$$

Properties and Special Cases:

• If
$$q < 2$$
, $\mathcal{M}_2^q = \{0\}$

- For a periodic function u and a finite sequence c = {c_n}_{n∈Z^d}, define T_u by f_{uc} = uĉ.
- Then, $u \in \mathcal{M}_2^q$, if for all such c,

$$||T_u c||_{l^q(\mathbb{Z}^d)} \le C ||c||_{l^2(\mathbb{Z}^d)}$$

- Properties and Special Cases:
 - ▶ If q < 2, $\mathcal{M}_2^q = \{0\}$ ▶ $\mathcal{M}_2^2 = L^{\infty}(\mathbb{T}^d)$ (Agrees with Riesz basis characterization)

- For a periodic function u and a finite sequence c = {c_n}_{n∈Z^d}, define T_u by Î_uc = uc.
- Then, $u \in \mathcal{M}_2^q$, if for all such c,

$$||T_u c||_{l^q(\mathbb{Z}^d)} \le C ||c||_{l^2(\mathbb{Z}^d)}$$

- Properties and Special Cases:
 - If q < 2, M₂^q = {0}
 M₂² = L[∞](T^d) (Agrees with Riesz basis characterization)
 M₂[∞] = L²(T^d) (Agrees with minimal system characterization)

Table of Contents

Exponentials in Weighted Spaces

Restrictions on Fourier Multipliers

Applications to Balian-Low Type Theorems

Uncertainty Principles for Fourier Multipliers

Based on connections with uncertainty principles (to be described later in the talk) we wish to study what properties would prevent a function u from being in \mathcal{M}_2^q .

Based on connections with uncertainty principles (to be described later in the talk) we wish to study what properties would prevent a function u from being in \mathcal{M}_2^q .

If $u \in L^{\infty}(\mathbb{T}^d) = \mathcal{M}_2^2$, then $u \in \mathcal{M}_2^q$ for all $q \ge 2$, but if u is unbounded it will fail to be in \mathcal{M}_2^q for small q.

Based on connections with uncertainty principles (to be described later in the talk) we wish to study what properties would prevent a function u from being in \mathcal{M}_2^q .

If $u \in L^{\infty}(\mathbb{T}^d) = \mathcal{M}_2^2$, then $u \in \mathcal{M}_2^q$ for all $q \ge 2$, but if u is unbounded it will fail to be in \mathcal{M}_2^q for small q.

We will assume that w = 1/u is smooth in the sense of Sobolev spaces, and that w has a zero or a set of zeros, and we will try to determine when the level of smoothness or the size of the zero set becomes too large to allow $u \in \mathcal{M}_2^q$.

Uncertainty Principles for Fourier Multipliers

Based on connections with uncertainty principles (to be described later in the talk) we wish to study what properties would prevent a function u from being in \mathcal{M}_2^q .

If $u \in L^{\infty}(\mathbb{T}^d) = \mathcal{M}_2^2$, then $u \in \mathcal{M}_2^q$ for all $q \ge 2$, but if u is unbounded it will fail to be in \mathcal{M}_2^q for small q.

We will assume that w = 1/u is smooth in the sense of Sobolev spaces, and that w has a zero or a set of zeros, and we will try to determine when the level of smoothness or the size of the zero set becomes too large to allow $u \in \mathcal{M}_2^q$.

Sobolev Space:

$$H^{s}(\mathbb{T}^{d}) = \{ f \in L^{2}(\mathbb{T}^{d}) : \sum_{k \in \mathbb{Z}^{d}} |k|^{2s} |\hat{f}(k)|^{2} < \infty \}$$

Uncertainty Principles for Fourier Multipliers

M. Northington V (mcnv3@gatech.edu)

Theorem (Nitzan, M.N., Powell)

Let $\frac{d}{2} \leq s \leq d$, and suppose $w \in H^s(\mathbb{T}^d)$ and w has a zero.

Uncertainty Principles for Fourier Multipliers

Theorem (Nitzan, M.N., Powell)

Let
$$\frac{d}{2} \leq s \leq d$$
, and suppose $w \in H^s(\mathbb{T}^d)$ and w has a zero.
1. If $\frac{d}{2} \leq s < \frac{d}{2} + 1$, then $u = \frac{1}{w} \notin \mathcal{M}_2^q$ for any q satisfying $2 \leq q \leq \frac{d}{d-s}$.

Theorem (Nitzan, M.N., Powell)

Let
$$\frac{d}{2} \leq s \leq d$$
, and suppose $w \in H^s(\mathbb{T}^d)$ and w has a zero.
1. If $\frac{d}{2} \leq s < \frac{d}{2} + 1$, then $u = \frac{1}{w} \notin \mathcal{M}_2^q$ for any q satisfying $2 \leq q \leq \frac{d}{d-s}$. Conversely, for any $q > \frac{d}{d-s}$ there exists $w \in H^s(\mathbb{T}^d)$ such that w has a zero and $u = \frac{1}{w} \in \mathcal{M}_2^q$.

Theorem (Nitzan, M.N., Powell)

Let
$$\frac{d}{2} \leq s \leq d$$
, and suppose $w \in H^s(\mathbb{T}^d)$ and w has a zero.
1. If $\frac{d}{2} \leq s < \frac{d}{2} + 1$, then $u = \frac{1}{w} \notin \mathcal{M}_2^q$ for any q satisfying
 $2 \leq q \leq \frac{d}{d-s}$. Conversely, for any $q > \frac{d}{d-s}$ there exists
 $w \in H^s(\mathbb{T}^d)$ such that w has a zero and $u = \frac{1}{w} \in \mathcal{M}_2^q$.
2. If $s = \frac{d}{2} + 1$, then $u = \frac{1}{w} \notin \mathcal{M}_2^q$ for any q satisfying
 $2 \leq q < \frac{2d}{d-2}$.

Theorem (Nitzan, M.N., Powell)

Let
$$\frac{d}{2} \leq s \leq d$$
, and suppose $w \in H^s(\mathbb{T}^d)$ and w has a zero.
1. If $\frac{d}{2} \leq s < \frac{d}{2} + 1$, then $u = \frac{1}{w} \notin \mathcal{M}_2^q$ for any q satisfying
 $2 \leq q \leq \frac{d}{d-s}$. Conversely, for any $q > \frac{d}{d-s}$ there exists
 $w \in H^s(\mathbb{T}^d)$ such that w has a zero and $u = \frac{1}{w} \in \mathcal{M}_2^q$.
2. If $s = \frac{d}{2} + 1$, then $u = \frac{1}{w} \notin \mathcal{M}_2^q$ for any q satisfying
 $2 \leq q < \frac{2d}{d-2}$. Conversely, there exists $w \in C^{\infty}(\mathbb{T}^d)$ with a
zero, such that $u = 1/w \in \mathcal{M}_2^q$ for any $q > \frac{2d}{d-2}$.

Uncertainty Principles for Fourier Multipliers

Theorem (Nitzan, M.N., Powell)

Let
$$\frac{d}{2} \le s \le d$$
, and suppose $w \in H^s(\mathbb{T}^d)$ and w has a zero.
1. If $\frac{d}{2} \le s < \frac{d}{2} + 1$, then $u = \frac{1}{w} \notin \mathcal{M}_2^q$ for any q satisfying
 $2 \le q \le \frac{d}{d-s}$. Conversely, for any $q > \frac{d}{d-s}$ there exists
 $w \in H^s(\mathbb{T}^d)$ such that w has a zero and $u = \frac{1}{w} \in \mathcal{M}_2^q$.
2. If $s = \frac{d}{2} + 1$, then $u = \frac{1}{w} \notin \mathcal{M}_2^q$ for any q satisfying
 $2 \le q < \frac{2d}{d-2}$. Conversely, there exists $w \in C^{\infty}(\mathbb{T}^d)$ with a
zero, such that $u = 1/w \in \mathcal{M}_2^q$ for any $q > \frac{2d}{d-2}$.

Proof relies on Sobolev Embedding Theorem in Hölder spaces.

Uncertainty Principles for Fourier Multipliers

Theorem (Nitzan, M.N., Powell)

Let
$$\frac{d}{2} \leq s \leq d$$
, and suppose $w \in H^s(\mathbb{T}^d)$ and w has a zero.
1. If $\frac{d}{2} \leq s < \frac{d}{2} + 1$, then $u = \frac{1}{w} \notin \mathcal{M}_2^q$ for any q satisfying
 $2 \leq q \leq \frac{d}{d-s}$. Conversely, for any $q > \frac{d}{d-s}$ there exists
 $w \in H^s(\mathbb{T}^d)$ such that w has a zero and $u = \frac{1}{w} \in \mathcal{M}_2^q$.
2. If $s = \frac{d}{2} + 1$, then $u = \frac{1}{w} \notin \mathcal{M}_2^q$ for any q satisfying
 $2 \leq q < \frac{2d}{d-2}$. Conversely, there exists $w \in C^{\infty}(\mathbb{T}^d)$ with a
zero, such that $u = 1/w \in \mathcal{M}_2^q$ for any $q > \frac{2d}{d-2}$.

Proof relies on Sobolev Embedding Theorem in Hölder spaces.
 For s > ^d/₂ + 1, we can't say more than the bound in part 2 unless we require a zero of a larger order.

▶ We are also interested in finding a similar result when the zero set of $w = \frac{1}{u}$ has a larger Hausdorff dimension.

- We are also interested in finding a similar result when the zero set of w = ¹/_u has a larger Hausdorff dimension.
- In this case, our functions may not be continuous, so we define our zero set as

$$\Sigma(w) = \left\{ x \in \mathbb{T}^d : \limsup_{\tau \to 0} \frac{1}{|B_\tau|} \int_{B_\tau(x)} |w(y)| dy = 0 \right\}.$$

- We are also interested in finding a similar result when the zero set of w = ¹/_u has a larger Hausdorff dimension.
- In this case, our functions may not be continuous, so we define our zero set as

$$\Sigma(w) = \left\{ x \in \mathbb{T}^d : \limsup_{\tau \to 0} \frac{1}{|B_\tau|} \int_{B_\tau(x)} |w(y)| dy = 0 \right\}.$$

 A similar question was studied by Jiang, Lin ('03) and Schikorra ('13) with the Fourier multiplier condition replaced with an integrability condition.

Theorem (Nitzan, M.N., Powell)

Let $0 \leq \sigma \leq d$ and $\frac{d-\sigma}{2} \leq s \leq d-\sigma$. Suppose $w \in W^{s,2}(\mathbb{T}^d)$ and $\mathcal{H}^{\sigma}(\Sigma(w)) > 0$.

Uncertainty Principles for Fourier Multipliers

Theorem (Nitzan, M.N., Powell)

Let $0 \leq \sigma \leq d$ and $\frac{d-\sigma}{2} \leq s \leq d-\sigma$. Suppose $w \in W^{s,2}(\mathbb{T}^d)$ and $\mathcal{H}^{\sigma}(\Sigma(w)) > 0$.

1. If
$$\frac{d-\sigma}{2} \leq s < \min(d-\sigma, \frac{d}{2}+1)$$
, then $u = \frac{1}{w} \notin \mathcal{M}_2^q$ for any q satisfying $2 \leq q \leq \frac{d}{d-s-\sigma/2}$.

Theorem (Nitzan, M.N., Powell)

Let $0 \le \sigma \le d$ and $\frac{d-\sigma}{2} \le s \le d-\sigma$. Suppose $w \in W^{s,2}(\mathbb{T}^d)$ and $\mathcal{H}^{\sigma}(\Sigma(w)) > 0$. 1. If $\frac{d-\sigma}{2} \le s < \min(d-\sigma, \frac{d}{2}+1)$, then $u = \frac{1}{w} \notin \mathcal{M}_2^q$ for any q satisfying $2 \le q \le \frac{d}{d-s-\sigma/2}$. 2. If $s = \frac{d}{2} + 1 \le d - \sigma$, then $u = \frac{1}{w} \notin \mathcal{M}_2^q$ for any q satisfying $2 \le q < \frac{2d}{d-2\sigma}$.

Theorem (Nitzan, M.N., Powell)

Let $0 \le \sigma \le d$ and $\frac{d-\sigma}{2} \le s \le d - \sigma$. Suppose $w \in W^{s,2}(\mathbb{T}^d)$ and $\mathcal{H}^{\sigma}(\Sigma(w)) > 0$. 1. If $\frac{d-\sigma}{2} \le s < \min(d - \sigma, \frac{d}{2} + 1)$, then $u = \frac{1}{w} \notin \mathcal{M}_2^q$ for any q satisfying $2 \le q \le \frac{d}{d-s-\sigma/2}$. 2. If $s = \frac{d}{2} + 1 \le d - \sigma$, then $u = \frac{1}{w} \notin \mathcal{M}_2^q$ for any q satisfying $2 \le q < \frac{2d}{d-2-\sigma}$. 3. If $s = d - \sigma < \frac{d}{2} + 1$, then $u = \frac{1}{w} \notin \mathcal{M}_2^q$ for any q.

Uncertainty Principles for Fourier Multipliers

Theorem (Nitzan, M.N., Powell)

Let $0 \le \sigma \le d$ and $\frac{d-\sigma}{2} \le s \le d - \sigma$. Suppose $w \in W^{s,2}(\mathbb{T}^d)$ and $\mathcal{H}^{\sigma}(\Sigma(w)) > 0$. 1. If $\frac{d-\sigma}{2} \le s < \min(d - \sigma, \frac{d}{2} + 1)$, then $u = \frac{1}{w} \notin \mathcal{M}_2^q$ for any q satisfying $2 \le q \le \frac{d}{d-s-\sigma/2}$. 2. If $s = \frac{d}{2} + 1 \le d - \sigma$, then $u = \frac{1}{w} \notin \mathcal{M}_2^q$ for any q satisfying $2 \le q < \frac{2d}{d-2-\sigma}$. 3. If $s = d - \sigma < \frac{d}{2} + 1$, then $u = \frac{1}{w} \notin \mathcal{M}_2^q$ for any q.

Part 3 is sharp, but parts 1 and 2 likely are not.

Uncertainty Principles for Fourier Multipliers

Theorem (Nitzan, M.N., Powell)

Let $0 \le \sigma \le d$ and $\frac{d-\sigma}{2} \le s \le d-\sigma$. Suppose $w \in W^{s,2}(\mathbb{T}^d)$ and $\mathcal{H}^{\sigma}(\Sigma(w)) > 0$. 1. If $\frac{d-\sigma}{2} \le s < \min(d-\sigma, \frac{d}{2}+1)$, then $u = \frac{1}{w} \notin \mathcal{M}_2^q$ for any q satisfying $2 \le q \le \frac{d}{d-s-\sigma/2}$. 2. If $s = \frac{d}{2} + 1 \le d-\sigma$, then $u = \frac{1}{w} \notin \mathcal{M}_2^q$ for any q satisfying $2 \le q < \frac{2d}{d-2-\sigma}$. 3. If $s = d-\sigma < \frac{d}{2} + 1$, then $u = \frac{1}{w} \notin \mathcal{M}_2^q$ for any q.

Part 3 is sharp, but parts 1 and 2 likely are not.

Based on the results of Jiang, Lin ('03) and Schikorra ('13), I (we?) conjecture that part 1 holds with 2 ≤ q ≤ d-σ/d-σ-s.

Theorem (Nitzan, M.N., Powell)

Let $0 \le \sigma \le d$ and $\frac{d-\sigma}{2} \le s \le d - \sigma$. Suppose $w \in W^{s,2}(\mathbb{T}^d)$ and $\mathcal{H}^{\sigma}(\Sigma(w)) > 0$. 1. If $\frac{d-\sigma}{2} \le s < \min(d - \sigma, \frac{d}{2} + 1)$, then $u = \frac{1}{w} \notin \mathcal{M}_2^q$ for any q satisfying $2 \le q \le \frac{d}{d-s-\sigma/2}$. 2. If $s = \frac{d}{2} + 1 \le d - \sigma$, then $u = \frac{1}{w} \notin \mathcal{M}_2^q$ for any q satisfying $2 \le q < \frac{2d}{d-2-\sigma}$. 3. If $s = d - \sigma < \frac{d}{2} + 1$, then $u = \frac{1}{w} \notin \mathcal{M}_2^q$ for any q.

- Part 3 is sharp, but parts 1 and 2 likely are not.
- Based on the results of Jiang, Lin ('03) and Schikorra ('13), I (we?) conjecture that part 1 holds with 2 ≤ q ≤ d-σ/d-σ-s.
- Proof uses a version of Poincare Inequality from Jiang, Lin ('03) and Schikorra ('13).

Uncertainty Principles for Fourier Multipliers

• Multipliers in \mathcal{M}_p^q for certain ranges of p and q.

- Multipliers in \mathcal{M}_p^q for certain ranges of p and q.
- Matrix-weights where W(x) is a $K \times K$ matrix

- Multipliers in \mathcal{M}_p^q for certain ranges of p and q.
- Matrix-weights where W(x) is a $K \times K$ matrix
- Nonsymmetric verisons where the Sobolev smoothness is different in different axis directions.

Table of Contents

Exponentials in Weighted Spaces

Restrictions on Fourier Multipliers

Applications to Balian-Low Type Theorems

Uncertainty Principles for Fourier Multipliers

Theorem (Battle ('88) Daubechies, Coifman, Semmes ('90))

Let $f \in L^2(\mathbb{R})$. If $\mathcal{G}(f) = \{e^{2\pi i m x} f(x-n)\}_{m,n\in\mathbb{Z}}$ is a Riesz basis for $L^2(\mathbb{R})$, then

$$\left(\int_{\mathbb{R}}|x|^{2}|f(x)|^{2}dx\right)\left(\int_{\mathbb{R}}|\xi|^{2}|\widehat{f}(\xi)|^{2}d\xi\right)=\infty$$

Uncertainty Principles for Fourier Multipliers

Theorem (Battle ('88) Daubechies, Coifman, Semmes ('90))

Let $f \in L^2(\mathbb{R})$. If $\mathcal{G}(f) = \{e^{2\pi i m x} f(x-n)\}_{m,n\in\mathbb{Z}}$ is a Riesz basis for $L^2(\mathbb{R})$, then

$$\left(\int_{\mathbb{R}} |x|^2 |f(x)|^2 dx\right) \left(\int_{\mathbb{R}} |\xi|^2 |\widehat{f}(\xi)|^2 d\xi\right) = \infty.$$

• Conclusion rephrased: "either $f \notin H^1(\mathbb{R})$ or $\widehat{f} \notin H^1(\mathbb{R})$."

Uncertainty Principles for Fourier Multipliers

Theorem (Battle ('88) Daubechies, Coifman, Semmes ('90))

Let $f \in L^2(\mathbb{R})$. If $\mathcal{G}(f) = \{e^{2\pi i m x} f(x-n)\}_{m,n\in\mathbb{Z}}$ is a Riesz basis for $L^2(\mathbb{R})$, then

$$\left(\int_{\mathbb{R}} |x|^2 |f(x)|^2 dx\right) \left(\int_{\mathbb{R}} |\xi|^2 |\widehat{f}(\xi)|^2 d\xi\right) = \infty.$$

Conclusion rephrased: "either f ∉ H¹(ℝ) or f̂ ∉ H¹(ℝ)."
 Assume f, f̂ ∈ H¹(ℝ). Smoothness passed to Zf ∈ H¹_{loc}(ℝ²).

Uncertainty Principles for Fourier Multipliers

Theorem (Battle ('88) Daubechies, Coifman, Semmes ('90))

Let $f \in L^2(\mathbb{R})$. If $\mathcal{G}(f) = \{e^{2\pi i m x} f(x-n)\}_{m,n\in\mathbb{Z}}$ is a Riesz basis for $L^2(\mathbb{R})$, then

$$\left(\int_{\mathbb{R}} |x|^2 |f(x)|^2 dx\right) \left(\int_{\mathbb{R}} |\xi|^2 |\widehat{f}(\xi)|^2 d\xi\right) = \infty.$$

- Conclusion rephrased: "either $f \notin H^1(\mathbb{R})$ or $\widehat{f} \notin H^1(\mathbb{R})$."
- Assume $f, \hat{f} \in H^1(\mathbb{R})$. Smoothness passed to $Zf \in H^1_{loc}(\mathbb{R}^2)$.
- ▶ Quasiperiodicity of *Zf* forces it to have a (essential) zero.

Uncertainty Principles for Fourier Multipliers

Theorem (Battle ('88) Daubechies, Coifman, Semmes ('90))

Let $f \in L^2(\mathbb{R})$. If $\mathcal{G}(f) = \{e^{2\pi i m x} f(x-n)\}_{m,n\in\mathbb{Z}}$ is a Riesz basis for $L^2(\mathbb{R})$, then

$$\left(\int_{\mathbb{R}} |x|^2 |f(x)|^2 dx\right) \left(\int_{\mathbb{R}} |\xi|^2 |\widehat{f}(\xi)|^2 d\xi\right) = \infty.$$

- Conclusion rephrased: "either $f \notin H^1(\mathbb{R})$ or $\hat{f} \notin H^1(\mathbb{R})$."
- Assume $f, \hat{f} \in H^1(\mathbb{R})$. Smoothness passed to $Zf \in H^1_{loc}(\mathbb{R}^2)$.
- Quasiperiodicity of Zf forces it to have a (essential) zero.
- ► The Riesz basis property forces |Zf| ≥ A > 0, which gives contradiction.

Uncertainty Principles for Fourier Multipliers

Theorem (Nitzan, M.N, Powell)

Fix q > 2. If $\mathcal{G}(f, 1, 1) = \{e^{2\pi i m x} f(x - n)\}_{m,n \in \mathbb{Z}}$ is an exact (C_q) -system for $L^2(\mathbb{R})$, then

$$\left(\int_{\mathbb{R}} |x|^{4(1-1/q)} |f(x)|^2 dx\right) \left(\int_{\mathbb{R}} |\xi|^{4(1-1/q)} |\widehat{f}(\xi)|^2 d\xi\right) = \infty.$$
 (1)

Equivalently, either $f \notin H^{2(1-1/q)}(\mathbb{R})$ or $\widehat{f} \notin H^{2(1-1/q)}(\mathbb{R})$.

Theorem (Nitzan, M.N, Powell)

Fix q > 2. If $\mathcal{G}(f, 1, 1) = \{e^{2\pi i m x} f(x - n)\}_{m,n \in \mathbb{Z}}$ is an exact (C_q) -system for $L^2(\mathbb{R})$, then

$$\left(\int_{\mathbb{R}} |x|^{4(1-1/q)} |f(x)|^2 dx\right) \left(\int_{\mathbb{R}} |\xi|^{4(1-1/q)} |\widehat{f}(\xi)|^2 d\xi\right) = \infty.$$
 (1)

Equivalently, either $f \notin H^{2(1-1/q)}(\mathbb{R})$ or $\widehat{f} \notin H^{2(1-1/q)}(\mathbb{R})$.

• Follows from single zero multiplier result.

Theorem (Nitzan, M.N, Powell)

Fix q > 2. If $\mathcal{G}(f, 1, 1) = \{e^{2\pi i m x} f(x - n)\}_{m,n \in \mathbb{Z}}$ is an exact (C_q) -system for $L^2(\mathbb{R})$, then

$$\left(\int_{\mathbb{R}} |x|^{4(1-1/q)} |f(x)|^2 dx\right) \left(\int_{\mathbb{R}} |\xi|^{4(1-1/q)} |\widehat{f}(\xi)|^2 d\xi\right) = \infty.$$
 (1)

Equivalently, either $f \notin H^{2(1-1/q)}(\mathbb{R})$ or $\widehat{f} \notin H^{2(1-1/q)}(\mathbb{R})$.

- Follows from single zero multiplier result.
- Nitzan, Olsen ('11) proved similar result, with an additional e on the weight, as well as non-symmetric versions.

Uncertainty Principles for Fourier Multipliers

Theorem (Nitzan, M.N, Powell)

Fix q > 2. If $\mathcal{G}(f, 1, 1) = \{e^{2\pi i m x} f(x - n)\}_{m,n \in \mathbb{Z}}$ is an exact (C_q) -system for $L^2(\mathbb{R})$, then

$$\left(\int_{\mathbb{R}} |x|^{4(1-1/q)} |f(x)|^2 dx\right) \left(\int_{\mathbb{R}} |\xi|^{4(1-1/q)} |\widehat{f}(\xi)|^2 d\xi\right) = \infty.$$
 (1)

Equivalently, either $f \notin H^{2(1-1/q)}(\mathbb{R})$ or $\hat{f} \notin H^{2(1-1/q)}(\mathbb{R})$.

- Follows from single zero multiplier result.
- Nitzan, Olsen ('11) proved similar result, with an additional e on the weight, as well as non-symmetric versions.
- ► The q = ∞ case gives the BLT for exact systems (originally due to Daubechies, Janssen ('93)) and nonsymmetric versions were given by Heil and Powell ('09)

Shift-Invariant Spaces with Extra Invariance

For a given shift-invariant space $V = V(f) \subset L^2(\mathbb{R}^d)$, For $\Gamma \subset \mathbb{R}^d$, V is $\underline{\Gamma}$ -invariant if $T_{\gamma}V \subset V$ for all $\gamma \in \Gamma$.

Shift-Invariant Spaces with Extra Invariance

For a given shift-invariant space $V = V(f) \subset L^2(\mathbb{R}^d)$,

• For $\Gamma \subset \mathbb{R}^d$, V is $\underline{\Gamma}$ -invariant if $T_{\gamma}V \subset V$ for all $\gamma \in \Gamma$.

- ▶ For any lattice $\Gamma \supset \mathbb{Z}^d$, there exists $f \in L^2(\mathbb{R}^d)$ such that V(f) is precisely Γ -invariant
 - ▶ d = 1 by Aldroubi, Cabrelli, Heil, Kornelson, Molter (2010)
 - ▶ d > 1 by Anastasio, Cabrelli, Paternostro (2011)

Shift-Invariant Spaces with Extra Invariance

For a given shift-invariant space $V = V(f) \subset L^2(\mathbb{R}^d)$,

• For $\Gamma \subset \mathbb{R}^d$, V is $\underline{\Gamma}$ -invariant if $T_{\gamma}V \subset V$ for all $\gamma \in \Gamma$.

- ▶ For any lattice $\Gamma \supset \mathbb{Z}^d$, there exists $f \in L^2(\mathbb{R}^d)$ such that V(f) is precisely Γ -invariant
 - ▶ d = 1 by Aldroubi, Cabrelli, Heil, Kornelson, Molter (2010)
 - ▶ d > 1 by Anastasio, Cabrelli, Paternostro (2011)
- Aldroubi, Sun, Wang (2011), and Tessera, Wang (2014), showed that Balian-Low type results exist for shift-invariant spaces with extra-invariance.

(C_q) -system SIS BLT

Theorem (Nitzan, M.N., Powell)

Fix $2 \leq q \leq \infty$. Suppose that $f \in L^2(\mathbb{R})$ is nonzero and V(f) is $\frac{1}{N}\mathbb{Z}$ -invariant. If T(f) is a minimal (C_q) -system in V(f), then

$$\int_{\mathbb{R}} |x|^{2(1-1/q)} |f(x)|^2 dx = \infty.$$

Equivalently, $\widehat{f} \notin H^{1-1/q}(\mathbb{R})$.

- If T(f) is a minimal system for V(f), then T(f) is a (C∞)-system. Thus, the q = ∞ case gives us a result for minimal systems.
- (Hardin, M.N., Powell) In the q = 2 case, the result holds in higher dimensions, and without assuming minimality. (i.e., frames and not necessarily Riesz bases)

Uncertainty Principles for Fourier Multipliers

Minimal (C_q) -result Higher Dimensions

Theorem

Fix q such that $2 \le q \le \infty$, and let $s = \min(d(\frac{1}{2} - \frac{1}{q}) + \frac{1}{2}, 1)$. Let $0 \ne f \in L^2(\mathbb{R}^d)$, and suppose V(f) is invariant under some non-integer shift. If $\mathcal{T}(f)$ is a minimal (C_q) -system for V(f) then

$$\int_{\mathbb{R}^d} |x|^{2s} |f(x)|^2 dx = \infty.$$

Uncertainty Principles for Fourier Multipliers

Minimal (C_q) -result Higher Dimensions

Theorem

Fix q such that $2 \le q \le \infty$, and let $s = \min(d(\frac{1}{2} - \frac{1}{q}) + \frac{1}{2}, 1)$. Let $0 \ne f \in L^2(\mathbb{R}^d)$, and suppose V(f) is invariant under some non-integer shift. If $\mathcal{T}(f)$ is a minimal (C_q) -system for V(f) then

$$\int_{\mathbb{R}^d} |x|^{2s} |f(x)|^2 dx = \infty.$$

 Can be extended to finitely many generators, requires a matrix-weight version of the Fourier multiplier results.

Uncertainty Principles for Fourier Multipliers M. Northington V (mcnv3@gatech.edu) June 6, 2018

Minimal (C_q) -result Higher Dimensions

Theorem

Fix q such that $2 \le q \le \infty$, and let $s = \min(d(\frac{1}{2} - \frac{1}{q}) + \frac{1}{2}, 1)$. Let $0 \ne f \in L^2(\mathbb{R}^d)$, and suppose V(f) is invariant under some non-integer shift. If $\mathcal{T}(f)$ is a minimal (C_q) -system for V(f) then

$$\int_{\mathbb{R}^d} |x|^{2s} |f(x)|^2 dx = \infty.$$

- Can be extended to finitely many generators, requires a matrix-weight version of the Fourier multiplier results.
- Probably the sharp s is 1 1/q in all dimensions.

 Extra-invarance can be characterized in terms of Pf. (Aldroubi, Cabrelli, Heil, Kornelson, Molter (2010), Anastasio, Cabrelli, Paternostro (2011))

- Extra-invarance can be characterized in terms of Pf. (Aldroubi, Cabrelli, Heil, Kornelson, Molter (2010), Anastasio, Cabrelli, Paternostro (2011))
- ▶ The condition is somewhat technical, so lets look at an example of $f \in L^2(\mathbb{R}^2)$ and V(f) having $\frac{1}{2}\mathbb{Z}^2$ -invariance.

- Extra-invarance can be characterized in terms of Pf. (Aldroubi, Cabrelli, Heil, Kornelson, Molter (2010), Anastasio, Cabrelli, Paternostro (2011))
- ► The condition is somewhat technical, so lets look at an example of f ∈ L²(ℝ²) and V(f) having ½Z²-invariance.

$$\begin{split} P(x) &= \sum_{k \in \mathbb{Z}^2} |\widehat{f}(x-k)|^2 \\ &= \sum_{k \in \mathbb{Z}^2} |\widehat{f}(x-2k)|^2 + \sum_{k \in \mathbb{Z}^2} |\widehat{f}(x-2k+e_1)|^2 \\ &+ \sum_{k \in \mathbb{Z}^2} |\widehat{f}(x-2k+e_2)|^2 + \sum_{k \in \mathbb{Z}^2} |\widehat{f}(x-2k+e_1+e_2)|^2 \\ &= P_2(x) + P_2(x+e_1) + P_2(x+e_2) + P_2(x+e_1+e_2). \end{split}$$

Uncertainty Principles for Fourier Multipliers

- Extra-invarance can be characterized in terms of Pf. (Aldroubi, Cabrelli, Heil, Kornelson, Molter (2010), Anastasio, Cabrelli, Paternostro (2011))
- ▶ The condition is somewhat technical, so lets look at an example of $f \in L^2(\mathbb{R}^2)$ and V(f) having $\frac{1}{2}\mathbb{Z}^2$ -invariance.

$$\begin{split} P(x) &= \sum_{k \in \mathbb{Z}^2} |\widehat{f}(x-k)|^2 \\ &= \sum_{k \in \mathbb{Z}^2} |\widehat{f}(x-2k)|^2 + \sum_{k \in \mathbb{Z}^2} |\widehat{f}(x-2k+e_1)|^2 \\ &+ \sum_{k \in \mathbb{Z}^2} |\widehat{f}(x-2k+e_2)|^2 + \sum_{k \in \mathbb{Z}^2} |\widehat{f}(x-2k+e_1+e_2)|^2 \\ &= P_2(x) + P_2(x+e_1) + P_2(x+e_2) + P_2(x+e_1+e_2). \\ V(f) \text{ is } \frac{1}{2}\mathbb{Z}^2 \text{-invariant iff } P_2(x) \text{ and it's shifts have disjoint} \end{split}$$

Uncertainty Principles for Fourier Multipliers

support.

Thanks

Thanks!!!

Uncertainty Principles for Fourier Multipliers