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Exponentials in Weighted Spaces

Let E = E(d) =
{
e2πik·x

}
k∈Zd .

I E is an orthonormal basis for L2(Td) = L2(Rd/Zd).

I For a weight w satisfying w(x) > 0 almost everywhere,
consider L2

w(Td) with norm,

‖g‖2L2
w(Td)

=

∫
Td
|g(x)|2w(x)dx.

I Question 1: What basis properties does E have in L2
w(Td)

and can these be characterized in terms of w?

I Question 2: Why do we care about this setting?
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Example 1: Gabor Systems and the Zak Transform

I Gabor System: For g ∈ L2(R),

G(g) := {e2πimxg(x− n)}m,n∈Z = {MmTng}m,n∈Z

I Zak Transform: Zg(x, y) :=
∑

k∈Z g(x− k)e2πiky

I Converts TF-shifts to exponentials:

Z(MmTng) = e2πi(mx−ny)Zg

Z(G(g)) = {e2πi(mx−ny)Z(g)}n,m∈Z

I Leads to an isometric isomorphism:
I L2(R)→ L2

w(T2), for w = |Zg|2
I G(g)→ E = E(2).
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Example 2: Shift-Invariant Spaces and Periodization

I Integer Translates: For f ∈ L2(Rd), T (f) = {f(· − l)}l∈Zd

I Shift-Invariant Space: V (f) = span(T (f))
L2(Rd)

I Periodization: P f̂(ξ) =
∑

k∈Zd |f̂(ξ − k)|2

I If h ∈ V (f), there exists a Zd-periodic m, so that ĥ = mf̂ .
I Leads to an isometric isomorphism:

I V (f)→ L2
w(Td), for w = P f̂

I h→ m
I T (f)→ E = E(d)
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Spanning and Independence Properties

Complete

Frame

Let H be a Hilbert space, and H = {hn}∞n=1 ⊂ H.

I H is complete if span H = H.

I H is a frame if it’s complete, and there exist
constants 0 < A ≤ B <∞ with

∀h ∈ H, A‖h‖2H ≤
∞∑
n=1

|〈h, hn〉|2 ≤ B‖h‖2H.

I Every frame is complete, with the additional
bonus that there exist a choice of coefficients
such that h =

∑
cnhn with

‖cn‖l2 � ‖h‖H.
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Spanning and Independence Properties

Complete
Exact

Frame
Riesz Basis

I H is a minimal system if for each n,

hn /∈ span{hm : m 6= n}.

I H is exact if it is complete and minimal.

I H is a Riesz basis if there is an orthonormal
basis {en}∞n=1 and a bounded invertible
operator T on H such that

Ten = hn.

I Riesz basis =⇒ frame; Riesz basis ⇐⇒
minimal frame.
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(Cq)-systems (Olevskii, Nitzan ’07)

I Fix 2 ≤ q ≤ ∞. {hn}∞n=1 ⊂ H is a (Cq)-system if for each
h ∈ H, h can be approximated to arbitrary accuracy by a
finite sum

∑
anhn such that

‖an‖lq ≤ C‖h‖H.

I Equivalently, {hn}∞n=1 is a (Cq)-system if and only if

‖h‖H ≤ C

( ∞∑
n=1

|〈h, hn〉|q
′

)1/q′

I (Cq) stands for completeness with lq control of coefficients.

I Bessel (C2)-system ⇐⇒ frame

I (Cq)-system =⇒ (Cq′)-system for all q′ ≥ q
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(Cq)-systems

Complete
Exact

(C2)-system
Frame

Riesz Basis

(C∞)-system

q ↗

Exact

Riesz Basis

q ↗

For Exact E in L2
w(Td):

Uncertainty Principles for Fourier Multipliers M. Northington V (mcnv3@gatech.edu) June 6, 2018



(Cq)-systems

Complete
Exact

(C2)-system
Frame

Riesz Basis

(C∞)-system

q ↗

Exact

Riesz Basis

q ↗

For Exact E in L2
w(Td):

Uncertainty Principles for Fourier Multipliers M. Northington V (mcnv3@gatech.edu) June 6, 2018



Back to Question 1

What is known about basis properties of E in L2
w(Td)?

Property Characterization

Riesz Basis
∃0 < A ≤ B <∞ such that
A ≤ |w(x)| ≤ B, for a.e. x

Frame
For S = {x : w(x) > 0},

w ∈ L∞(Td), w−1 ∈ L∞(S)

Minimal System w−1 ∈ L1(Td)
Exact (Cq)-system w−1/2 ∈Mq

2

I The first 3 are well known: de Boor, DeVore, Ron (’92), Ron,
Shen (’95), Bownik (’00)

I Nitzan, Olsen (’11) gave necessary and sufficient conditions
similar to the fourth characterization

Uncertainty Principles for Fourier Multipliers M. Northington V (mcnv3@gatech.edu) June 6, 2018



Back to Question 1

What is known about basis properties of E in L2
w(Td)?

Property Characterization

Riesz Basis
∃0 < A ≤ B <∞ such that
A ≤ |w(x)| ≤ B, for a.e. x

Frame
For S = {x : w(x) > 0},

w ∈ L∞(Td), w−1 ∈ L∞(S)

Minimal System w−1 ∈ L1(Td)
Exact (Cq)-system w−1/2 ∈Mq

2

I The first 3 are well known: de Boor, DeVore, Ron (’92), Ron,
Shen (’95), Bownik (’00)

I Nitzan, Olsen (’11) gave necessary and sufficient conditions
similar to the fourth characterization

Uncertainty Principles for Fourier Multipliers M. Northington V (mcnv3@gatech.edu) June 6, 2018



Back to Question 1

What is known about basis properties of E in L2
w(Td)?

Property Characterization

Riesz Basis
∃0 < A ≤ B <∞ such that
A ≤ |w(x)| ≤ B, for a.e. x

Frame
For S = {x : w(x) > 0},

w ∈ L∞(Td), w−1 ∈ L∞(S)

Minimal System w−1 ∈ L1(Td)

Exact (Cq)-system w−1/2 ∈Mq
2

I The first 3 are well known: de Boor, DeVore, Ron (’92), Ron,
Shen (’95), Bownik (’00)

I Nitzan, Olsen (’11) gave necessary and sufficient conditions
similar to the fourth characterization

Uncertainty Principles for Fourier Multipliers M. Northington V (mcnv3@gatech.edu) June 6, 2018



Back to Question 1

What is known about basis properties of E in L2
w(Td)?

Property Characterization

Riesz Basis
∃0 < A ≤ B <∞ such that
A ≤ |w(x)| ≤ B, for a.e. x

Frame
For S = {x : w(x) > 0},

w ∈ L∞(Td), w−1 ∈ L∞(S)

Minimal System w−1 ∈ L1(Td)
Exact (Cq)-system w−1/2 ∈Mq

2

I The first 3 are well known: de Boor, DeVore, Ron (’92), Ron,
Shen (’95), Bownik (’00)

I Nitzan, Olsen (’11) gave necessary and sufficient conditions
similar to the fourth characterization

Uncertainty Principles for Fourier Multipliers M. Northington V (mcnv3@gatech.edu) June 6, 2018



Back to Question 1

What is known about basis properties of E in L2
w(Td)?

Property Characterization

Riesz Basis
∃0 < A ≤ B <∞ such that
A ≤ |w(x)| ≤ B, for a.e. x

Frame
For S = {x : w(x) > 0},

w ∈ L∞(Td), w−1 ∈ L∞(S)

Minimal System w−1 ∈ L1(Td)
Exact (Cq)-system w−1/2 ∈Mq

2

I The first 3 are well known: de Boor, DeVore, Ron (’92), Ron,
Shen (’95), Bownik (’00)

I Nitzan, Olsen (’11) gave necessary and sufficient conditions
similar to the fourth characterization

Uncertainty Principles for Fourier Multipliers M. Northington V (mcnv3@gatech.edu) June 6, 2018



Back to Question 1

What is known about basis properties of E in L2
w(Td)?

Property Characterization

Riesz Basis
∃0 < A ≤ B <∞ such that
A ≤ |w(x)| ≤ B, for a.e. x

Frame
For S = {x : w(x) > 0},

w ∈ L∞(Td), w−1 ∈ L∞(S)

Minimal System w−1 ∈ L1(Td)
Exact (Cq)-system w−1/2 ∈Mq

2

I The first 3 are well known: de Boor, DeVore, Ron (’92), Ron,
Shen (’95), Bownik (’00)

I Nitzan, Olsen (’11) gave necessary and sufficient conditions
similar to the fourth characterization

Uncertainty Principles for Fourier Multipliers M. Northington V (mcnv3@gatech.edu) June 6, 2018



What is Mq
2?
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ȟ

Tuc

Uncertainty Principles for Fourier Multipliers M. Northington V (mcnv3@gatech.edu) June 6, 2018



What is Mq
2?

c−1

c0

c1

c2

−1 0 2

−1 −0.5 0 0.5 1

−2

−1

0

1

2

ĉ
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What is Mq
2?

I For a periodic function u and a finite sequence c = {cn}n∈Zd ,

define Tu by T̂uc = uĉ.

I Then, u ∈Mq
2, if for all such c,

‖Tuc‖lq(Zd) ≤ C‖c‖l2(Zd)

I Properties and Special Cases:
I If q < 2, Mq

2 = {0}
I M2

2 = L∞(Td) (Agrees with Riesz basis characterization)
I M∞

2 = L2(Td) (Agrees with minimal system characterization)
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What can prevent u from being a bounded multiplier?

Based on connections with uncertainty principles (to be described
later in the talk) we wish to study what properties would prevent a
function u from being in Mq

2.

If u ∈ L∞(Td) =M2
2, then u ∈Mq

2 for all q ≥ 2, but if u is
unbounded it will fail to be in Mq

2 for small q.

We will assume that w = 1/u is smooth in the sense of Sobolev
spaces, and that w has a zero or a set of zeros, and we will try to
determine when the level of smoothness or the size of the zero set
becomes too large to allow u ∈Mq

2.

Sobolev Space:

Hs(Td) = {f ∈ L2(Td) :
∑
k∈Zd
|k|2s|f̂(k)|2 <∞}

Uncertainty Principles for Fourier Multipliers M. Northington V (mcnv3@gatech.edu) June 6, 2018



What can prevent u from being a bounded multiplier?

Based on connections with uncertainty principles (to be described
later in the talk) we wish to study what properties would prevent a
function u from being in Mq

2.

If u ∈ L∞(Td) =M2
2, then u ∈Mq

2 for all q ≥ 2, but if u is
unbounded it will fail to be in Mq

2 for small q.

We will assume that w = 1/u is smooth in the sense of Sobolev
spaces, and that w has a zero or a set of zeros, and we will try to
determine when the level of smoothness or the size of the zero set
becomes too large to allow u ∈Mq

2.

Sobolev Space:

Hs(Td) = {f ∈ L2(Td) :
∑
k∈Zd
|k|2s|f̂(k)|2 <∞}

Uncertainty Principles for Fourier Multipliers M. Northington V (mcnv3@gatech.edu) June 6, 2018



What can prevent u from being a bounded multiplier?

Based on connections with uncertainty principles (to be described
later in the talk) we wish to study what properties would prevent a
function u from being in Mq

2.

If u ∈ L∞(Td) =M2
2, then u ∈Mq

2 for all q ≥ 2, but if u is
unbounded it will fail to be in Mq

2 for small q.

We will assume that w = 1/u is smooth in the sense of Sobolev
spaces, and that w has a zero or a set of zeros, and we will try to
determine when the level of smoothness or the size of the zero set
becomes too large to allow u ∈Mq

2.

Sobolev Space:

Hs(Td) = {f ∈ L2(Td) :
∑
k∈Zd
|k|2s|f̂(k)|2 <∞}

Uncertainty Principles for Fourier Multipliers M. Northington V (mcnv3@gatech.edu) June 6, 2018



What can prevent u from being a bounded multiplier?

Based on connections with uncertainty principles (to be described
later in the talk) we wish to study what properties would prevent a
function u from being in Mq

2.

If u ∈ L∞(Td) =M2
2, then u ∈Mq

2 for all q ≥ 2, but if u is
unbounded it will fail to be in Mq

2 for small q.

We will assume that w = 1/u is smooth in the sense of Sobolev
spaces, and that w has a zero or a set of zeros, and we will try to
determine when the level of smoothness or the size of the zero set
becomes too large to allow u ∈Mq

2.

Sobolev Space:

Hs(Td) = {f ∈ L2(Td) :
∑
k∈Zd
|k|2s|f̂(k)|2 <∞}

Uncertainty Principles for Fourier Multipliers M. Northington V (mcnv3@gatech.edu) June 6, 2018



Results with a single zero

Theorem (Nitzan, M.N., Powell)

Let d
2 ≤ s ≤ d, and suppose w ∈ Hs(Td) and w has a zero.

1. If d2 ≤ s <
d
2 + 1, then u = 1

w /∈Mq
2 for any q satisfying

2 ≤ q ≤ d
d−s . Conversely, for any q >

d
d−s there exists

w ∈ Hs(Td) such that w has a zero and u = 1
w ∈M

q
2.

2. If s = d
2 + 1, then u = 1

w /∈Mq
2 for any q satisfying

2 ≤ q < 2d
d−2 . Conversely, there exists w ∈ C∞(Td) with a

zero, such that u = 1/w ∈Mq
2 for any q > 2d

d−2 .

I Proof relies on Sobolev Embedding Theorem in Hölder spaces.

I For s > d
2 + 1, we can’t say more than the bound in part 2

unless we require a zero of a larger order.
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I For s > d
2 + 1, we can’t say more than the bound in part 2

unless we require a zero of a larger order.

Uncertainty Principles for Fourier Multipliers M. Northington V (mcnv3@gatech.edu) June 6, 2018



Results with a single zero

Theorem (Nitzan, M.N., Powell)

Let d
2 ≤ s ≤ d, and suppose w ∈ Hs(Td) and w has a zero.

1. If d2 ≤ s <
d
2 + 1, then u = 1

w /∈Mq
2 for any q satisfying

2 ≤ q ≤ d
d−s . Conversely, for any q >

d
d−s there exists

w ∈ Hs(Td) such that w has a zero and u = 1
w ∈M

q
2.

2. If s = d
2 + 1, then u = 1

w /∈Mq
2 for any q satisfying

2 ≤ q < 2d
d−2 . Conversely, there exists w ∈ C∞(Td) with a

zero, such that u = 1/w ∈Mq
2 for any q > 2d

d−2 .

I Proof relies on Sobolev Embedding Theorem in Hölder spaces.

I For s > d
2 + 1, we can’t say more than the bound in part 2

unless we require a zero of a larger order.

Uncertainty Principles for Fourier Multipliers M. Northington V (mcnv3@gatech.edu) June 6, 2018



Zero Sets of Larger Hausdorff Dimension

I We are also interested in finding a similar result when the zero
set of w = 1

u has a larger Hausdorff dimension.

I In this case, our functions may not be continuous, so we
define our zero set as

Σ(w) =

{
x ∈ Td : lim sup

τ→0

1

|Bτ |

∫
Bτ (x)

|w(y)|dy = 0

}
.

I A similar question was studied by Jiang, Lin (’03) and
Schikorra (’13) with the Fourier multiplier condition replaced
with an integrability condition.
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Zero Sets of Larger Hausdorff Dimension

Theorem (Nitzan, M.N., Powell)

Let 0 ≤ σ ≤ d and d−σ
2 ≤ s ≤ d− σ. Suppose w ∈W

s,2(Td) and
Hσ(Σ(w)) > 0.

1. If d−σ2 ≤ s < min(d− σ, d2 + 1), then u = 1
w /∈Mq

2 for any q

satisfying 2 ≤ q ≤ d
d−s−σ/2 .

2. If s = d
2 + 1 ≤ d− σ, then u = 1

w /∈Mq
2 for any q satisfying

2 ≤ q < 2d
d−2−σ .

3. If s = d− σ < d
2 + 1, then u = 1

w /∈Mq
2 for any q.

I Part 3 is sharp, but parts 1 and 2 likely are not.
I Based on the results of Jiang, Lin (’03) and Schikorra (’13), I

(we?) conjecture that part 1 holds with 2 ≤ q ≤ d−σ
d−σ−s .

I Proof uses a version of Poincare Inequality from Jiang, Lin
(’03) and Schikorra (’13).
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Extensions

We have a few variations of these multiplier results

I Multipliers in Mq
p for certain ranges of p and q.

I Matrix-weights where W (x) is a K ×K matrix

I Nonsymmetric verisons where the Sobolev smoothness is
different in different axis directions.
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The Balian-Low Theorem

Theorem (Battle (’88) Daubechies, Coifman, Semmes (’90))

Let f ∈ L2(R). If G(f) = {e2πimxf(x− n)}m,n∈Z is a Riesz basis
for L2(R), then(∫

R
|x|2|f(x)|2dx

)(∫
R
|ξ|2|f̂(ξ)|2dξ

)
=∞.

I Conclusion rephrased: “either f /∈ H1(R) or f̂ /∈ H1(R).”

I Assume f, f̂ ∈ H1(R). Smoothness passed to Zf ∈ H1
loc(R2).

I Quasiperiodicity of Zf forces it to have a (essential) zero.

I The Riesz basis property forces |Zf | ≥ A > 0, which gives
contradiction.
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Sharp (Cq)-system BLT

Theorem (Nitzan, M.N, Powell)

Fix q > 2. If G(f, 1, 1) = {e2πimxf(x− n)}m,n∈Z is an exact
(Cq)-system for L2(R), then(∫

R
|x|4(1−1/q)|f(x)|2dx

)(∫
R
|ξ|4(1−1/q)|f̂(ξ)|2dξ

)
=∞. (1)

Equivalently, either f /∈ H2(1−1/q)(R) or f̂ /∈ H2(1−1/q)(R).

I Follows from single zero multiplier result.

I Nitzan, Olsen (’11) proved similar result, with an additional ε
on the weight, as well as non-symmetric versions.

I The q =∞ case gives the BLT for exact systems (originally
due to Daubechies, Janssen (’93)) and nonsymmetric versions
were given by Heil and Powell (’09)
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Shift-Invariant Spaces with Extra Invariance

For a given shift-invariant space V = V (f) ⊂ L2(Rd),

I For Γ ⊂ Rd, V is Γ-invariant if TγV ⊂ V for all γ ∈ Γ.

I For any lattice Γ ⊃ Zd, there exists f ∈ L2(Rd) such that
V (f) is precisely Γ-invariant

I d = 1 by Aldroubi, Cabrelli, Heil, Kornelson, Molter (2010)
I d > 1 by Anastasio, Cabrelli, Paternostro (2011)

I Aldroubi, Sun, Wang (2011), and Tessera, Wang (2014),
showed that Balian-Low type results exist for shift-invariant
spaces with extra-invariance.
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(Cq)-system SIS BLT

Theorem (Nitzan, M.N., Powell)

Fix 2 ≤ q ≤ ∞. Suppose that f ∈ L2(R) is nonzero and V (f) is
1
NZ-invariant. If T (f) is a minimal (Cq)-system in V (f), then∫

R
|x|2(1−1/q) |f(x)|2dx =∞.

Equivalently, f̂ /∈ H1−1/q(R).

I If T (f) is a minimal system for V (f), then T (f) is a
(C∞)-system. Thus, the q =∞ case gives us a result for
minimal systems.

I (Hardin, M.N., Powell) In the q = 2 case, the result holds in
higher dimensions, and without assuming minimality. (i.e.,
frames and not necessarily Riesz bases)
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Minimal (Cq)-result Higher Dimensions

Theorem

Fix q such that 2 ≤ q ≤ ∞, and let s = min(d(12 −
1
q ) + 1

2 , 1). Let

0 6= f ∈ L2(Rd), and suppose V (f) is invariant under some
non-integer shift. If T (f) is a minimal (Cq)-system for V (f) then∫

Rd
|x|2s|f(x)|2dx =∞.

I Can be extended to finitely many generators, requires a
matrix-weight version of the Fourier multiplier results.

I Probably the sharp s is 1− 1/q in all dimensions.
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Where does the zero come from?

I Extra-invarance can be characterized in terms of P f̂ .
(Aldroubi, Cabrelli, Heil, Kornelson, Molter (2010), Anastasio,
Cabrelli, Paternostro (2011))

I The condition is somewhat technical, so lets look at an
example of f ∈ L2(R2) and V (f) having 1

2Z
2-invariance.

P (x) =
∑
k∈Z2

|f̂(x− k)|2

=
∑
k∈Z2

|f̂(x− 2k)|2 +
∑
k∈Z2

|f̂(x− 2k + e1)|2

+
∑
k∈Z2

|f̂(x− 2k + e2)|2 +
∑
k∈Z2

|f̂(x− 2k + e1 + e2)|2

= P2(x) + P2(x+ e1) + P2(x+ e2) + P2(x+ e1 + e2).

I V (f) is 1
2Z

2-invariant iff P2(x) and it’s shifts have disjoint
support.
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Thanks

Thanks!!!
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