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Exponentials in Weighted Spaces

Let E = E(d) = {e*™F}, ..
» E is an orthonormal basis for L?(T¢) = L?(R¢/Z%).
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Exponentials in Weighted Spaces

Let E = E(d) = {e*™F}, ..
» E is an orthonormal basis for L?(T¢) = L?(R¢/Z%).

» For a weight w satisfying w(x) > 0 almost everywhere
consider L2 (T?) with norm,

915 ooy = | l9ta)Pute)da:
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Exponentials in Weighted Spaces

Let E = E(d) = {e*™F}, ..
» E is an orthonormal basis for L?(T¢) = L?(R¢/Z%).

» For a weight w satisfying w(x) > 0 almost everywhere,
consider L2 (T?) with norm,

915 ooy = | l9ta)Pute)da:

» Question 1: What basis properties does E have in L2 (T9)
and can these be characterized in terms of w?
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Exponentials in Weighted Spaces

Let E = E(d) = {e*™F}, ..
» E is an orthonormal basis for L?(T¢) = L?(R¢/Z%).

» For a weight w satisfying w(x) > 0 almost everywhere,
consider L2 (T?) with norm,

9130 = [, lo(@)Pu(o)da.
» Question 1: What basis properties does E have in L2 (T9)

and can these be characterized in terms of w?

» Question 2: Why do we care about this setting?

Uncertainty Principles for Fourier Multipliers M. Northington V (mcnv3@gatech.edu) June 6, 2018



Example 1: Gabor Systems and the Zak Transform

» Gabor System: For g € L*(R),

G(g) = {627rimwg(x - n)}mm,eZ = {Mang}mm,eZ
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Example 1: Gabor Systems and the Zak Transform
» Gabor System: For g € L*(R),

G(g) = {627rimwg(x - n)}mm,eZ = {Mang}mm,eZ

» Zak Transform: Zg(z,y) := > 1z 9(x — k)e2miky
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Example 1: Gabor Systems and the Zak Transform

» Gabor System: For g € L*(R),

G(g) = {627ring(x - n)}mm,eZ = {Mang}mm,eZ

» Zak Transform: Zg(z,y) := > 1z 9(x — k)e2miky
» Converts TF-shifts to exponentials:

Z(Mang) _ eQﬂ'i(mxfny) Zg
Z(G(g)) = {e*™ ™ ™) Z(g) }nmez
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Example 1: Gabor Systems and the Zak Transform

v

Gabor System: For g € L*(R),

G(g) = {627ring(x - n)}m,nel = {Mang}mm,eZ

Zak Transform: Zg(z,y) := Zkez gz — k.)€27riky
Converts TF-shifts to exponentials:

v

v

Z(Mang) _ eQﬂ'i(mxfny) Zg
Z(G(g)) = {*™ ™) Z(g)}n,mez
Leads to an isometric isomorphism:

L2(R) — L2(T?), for w = | Zg|?
G(9) — E = E(2).

v
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Example 2: Shift-Invariant Spaces and Periodization

» Integer Translates: For f € L2(R?), T(f) = {f(- — D}heza
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Example 2: Shift-Invariant Spaces and Periodization

» Integer Translates: For f € L2(R%), T(f) = {f(- — D) }1eza
» Shift-Invariant Space: V(f) = span(T(f))
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Example 2: Shift-Invariant Spaces and Periodization

» Integer Translates: For f € L2(R%), T(f) = {f( D}heza

d
» Shift-Invariant Space: V(f) = span(T'(f)) (f)) .
2

» Periodization: Pf( ) =2 kezd \f(f k)|
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Example 2: Shift-Invariant Spaces and Periodization

v

Integer Translates: For f € L2(R%), T(f) = {f(- — D}heza
L?(R%)

v

Shift-Invariant Space: V(f) = span(T'(f))
Periodization: P(£) = Y ega | F(€ — K)|?
If h € V(f), there exists a Z%periodic m, so that h=mf.

v

v
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Example 2: Shift-Invariant Spaces and Periodization

v

Integer Translates: For f € L2(R%), T(f) = {f(- — D}heza
L?(R%)

v

Shift-Invariant Space: V(f) = span(T'(f))
Periodization: P(£) = Y ega | F(€ — K)|?
If h € V(f), there exists a Z%periodic m, so that h=mf.

Leads to an isometric isomorphism:
V(f) = L2(T%), for w = Pf
h—m
T(f) — E=E(d)

v

v

v
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Spanning and Independence Properties

Let H be a Hilbert space, and H = {h,}2°; C H.

Complete

» H is complete if span H = H.

Frame
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Let H be a Hilbert space, and H = {h,}2°; C H.

Complete

» H is complete if span H = H.

» H is a frame if it's complete, and there exist
constants 0 < A < B < oo with

VheH, All3 <Y [h ha)® < Bl

n=1

Frame




Spanning and Independence Properties

Let H be a Hilbert space, and H = {h,}2°; C H.

Complete . .
» H is complete if span H = H.
» H is a frame if it's complete, and there exist
constants 0 < A < B < oo with
o0
VheM, Alh3 <D |(h hn)|* < BJ|h|3,
n=1
» Every frame is complete, with the additional
bonus that there exist a choice of coefficients
Frame such that h = ¢, hy, with

lenlliz = [1all3
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Spanning and Independence Properties

Complete » H is a minimal system if for each n,
Exact

hy & span{h,, : m # n}.

Frame
Riesz Basis
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Complete » H is a minimal system if for each n,
Exact

hy & span{h,, : m # n}.

» H is exact if it is complete and minimal.
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Spanning and Independence Properties

Complete
Exact

Frame
Riesz Basis

» H is a minimal system if for each n,

hy & span{h,, : m # n}.

» H is exact if it is complete and minimal.

» H is a Riesz basis if there is an orthonormal
basis {e,,}>2; and a bounded invertible
operator 1" on H such that

Te, = hy,.



Spanning and Independence Properties

Complete » H is a minimal system if for each n,
Exact

hy & span{h,, : m # n}.

» H is exact if it is complete and minimal.

» H is a Riesz basis if there is an orthonormal
basis {e,,}>2; and a bounded invertible
operator 1" on H such that

Te, = hy,.
Frame > Riesz basis = frame; Riesz basis <=
Riesz Basis minimal frame.
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(C,)-systems (Olevskii, Nitzan '07)

» Fix 2 < ¢ <oo. {hp}p2, CHisa (Cy)-system if for each
h € H, h can be approximated to arbitrary accuracy by a
finite sum > a,hy, such that

llanllie < C|\h||%-

Uncertainty Principles for Fourier Multipliers M. Northington V (mcnv3@gatech.edu) June 6, 2018



(C,)-systems (Olevskii, Nitzan '07)

» Fix 2 < ¢ <oo. {hp}p2, CHisa (Cy)-system if for each
h € H, h can be approximated to arbitrary accuracy by a
finite sum > a,hy, such that

llanllie < C|\h||%-

» Equivalently, {h,}7; is a (Cy)-system if and only if

o0 1/f1/
Ihlly < C (Z (R, hm’)
n=1
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(C,)-systems (Olevskii, Nitzan '07)

» Fix 2 < ¢ <oo. {hp}p2, CHisa (Cy)-system if for each
h € H, h can be approximated to arbitrary accuracy by a
finite sum > a,hy, such that

llanllie < C|\h||%-

» Equivalently, {h,}7; is a (Cy)-system if and only if

(o) 1/f1/
bl < C (Z (R, hn>\q’>
n=1

» (C,) stands for completeness with {9 control of coefficients.
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(C,)-systems (Olevskii, Nitzan '07)

v

Fix 2 < g < oo. {h,}52; C H is a (Cy)-system if for each
h € H, h can be approximated to arbitrary accuracy by a
finite sum > a,hy, such that

llanllie < C|\h||%-

v

Equivalently, {h,}72; is a (Cy)-system if and only if

(o) 1/f1/
Il < C (Z (R, hn>\q>
n=1

(Cy) stands for completeness with {9 control of coefficients.

v

v

Bessel (Cy)-system <= frame
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(C,)-systems (Olevskii, Nitzan '07)

v

Fix 2 < g < oo. {h,}52; C H is a (Cy)-system if for each
h € H, h can be approximated to arbitrary accuracy by a
finite sum > a,hy, such that

llanllie < C|\h||%-

v

Equivalently, {h,}72; is a (Cy)-system if and only if

(o) 1/f1/
Il < C (Z (R, hn>\q>
n=1

(Cy) stands for completeness with {9 control of coefficients.

v

v

Bessel (Cy)-system <= frame
> (Cy)-system = (Cy)-system for all ¢ > ¢
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(C,)-systems

Complete
Exact

(Cxo)-system

(Co)-system
Frame
Riesz Basis




(C,)-systems

For Exact E in L2 (T%):
Complete
Exact Exact
(Cxo)-system
(C2F)r_:::;em Riesz Basis
Riesz Basis
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Back to Question 1

What is known about basis properties of E in L2 (T%)?

Property Characterization
30 < A < B < oo such that
A <|w(x)| < B, for a.e. x

Riesz Basis

Uncertainty Principles for Fourier Multipliers M. Northington V (mcnv3@gatech.edu) June 6, 2018



Back to Question 1

What is known about basis properties of E in L2 (T%)?

Property Characterization

J0 < A < B < oo such that

A <|w(x)| < B, for a.e. x
For S = {z : w(z) > 0},

w € L>®(TY), w™! € L=(9)

Riesz Basis

Frame
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Back to Question 1

What is known about basis properties of E in L2 (T%)?

Property Characterization

J0 < A < B < oo such that

A <|w(x)| < B, for a.e. x
For S = {z: w(z) > 0},

w € L>®(TY), w™! € L=(9)

Minimal System w~T € L1(TY)

Riesz Basis

Frame
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Back to Question 1

What is known about basis properties of E in L2 (T%)?

Property Characterization

J0 < A < B < oo such that

A <|w(x)| < B, for a.e. x
For S = {z: w(z) > 0},

Riesz Basis

Frame w e Lo(Td), wl € L%(S)
Minimal System w~T € L1(TY)
Exact (Cy)-system w2 e M
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Back to Question 1

What is known about basis properties of E in L2 (T%)?

Property Characterization
Riess Basis 30 < A < B < 0o such that
A <|w(x)| < B, for a.e. x
For S = {z : w(x) > 0},
Frame w e LOO(']I‘E), w*(l )e LOO}(S)
Minimal System w~T € L1(TY)
Exact (C,)-system w1 e M3

» The first 3 are well known: de Boor, DeVore, Ron ('92), Ron,
Shen ('95), Bownik ('00)
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Back to Question 1

What is known about basis properties of E in L2 (T%)?

Property Characterization
Riess Basis 30 < A < B < 0o such that
A <|w(x)| < B, for a.e. x
For S = {z : w(x) > 0},
Frame w e LOO(']I‘E), w*(l )e LOO}(S)
Minimal System w~T € L1(TY)
Exact (C,)-system w1 e M3

» The first 3 are well known: de Boor, DeVore, Ron ('92), Ron,
Shen ('95), Bownik ('00)

» Nitzan, Olsen ('11) gave necessary and sufficient conditions
similar to the fourth characterization
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What is M3?




What is M3?




What is M3?
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What is M3?

-1 —0.5 0 0.5 1
9 | ]
1 b ]
T ¢ | ’
-1 ]

-1 0 1 2

o | ]

L L L L L

-1 —0.5 0 0.5 1
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What is M3?

» For a periodic function u and a finite sequence ¢ = {¢, },,c74,
define T,, by Ty,c = uc.
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What is M3?

» For a periodic function u and a finite sequence ¢ = {¢, },,c74,
define T,, by Ty,c = uc.
» Then, u € M2, if for all such ¢,

1 Tuclliazay < Cllellizzay
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What is M3?

» For a periodic function u and a finite sequence ¢ = {¢, },,c74,
define T,, by Ty,c = uc.
» Then, u € M2, if for all such ¢,

1 Tuclliazay < Cllellizzay

» Properties and Special Cases:
If ¢ <2, M2 ={0}
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What is M3?

» For a periodic function u and a finite sequence ¢ = {¢, },,c74,
define T,, by Ty,c = uc.
» Then, u € M2, if for all such ¢,

1 Tuclliazay < Cllellizzay
» Properties and Special Cases:

If ¢ <2, ML ={0}
M3 = L>=(T?) (Agrees with Riesz basis characterization)
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What is M3?

» For a periodic function u and a finite sequence ¢ = {¢, },,c74,
define T,, by Ty,c = uc.
» Then, u € M3, if for all such ¢,
1 Tuclliazay < Cllellizzay
» Properties and Special Cases:
If ¢ <2, M2 ={0}

M3 = L>=(T?) (Agrees with Riesz basis characterization)
MS® = L?(T?) (Agrees with minimal system characterization)
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What can prevent u from being a bounded multiplier?
Based on connections with uncertainty principles (to be described

later in the talk) we wish to study what properties would prevent a
function u from being in M.
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What can prevent u from being a bounded multiplier?
Based on connections with uncertainty principles (to be described

later in the talk) we wish to study what properties would prevent a
function u from being in M3,

If u € L®°(T9) = M2, then u € M3 for all ¢ > 2, but if u is
unbounded it will fail to be in M for small g.
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What can prevent u from being a bounded multiplier?

Based on connections with uncertainty principles (to be described
later in the talk) we wish to study what properties would prevent a
function u from being in M3,

If u € L®°(T9) = M2, then u € M3 for all ¢ > 2, but if u is
unbounded it will fail to be in M for small g.

We will assume that w = 1/u is smooth in the sense of Sobolev
spaces, and that w has a zero or a set of zeros, and we will try to
determine when the level of smoothness or the size of the zero set
becomes too large to allow u € M1,
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What can prevent u from being a bounded multiplier?

Based on connections with uncertainty principles (to be described
later in the talk) we wish to study what properties would prevent a
function u from being in M3,

If u € L®°(T9) = M2, then u € M3 for all ¢ > 2, but if u is
unbounded it will fail to be in M for small g.

We will assume that w = 1/u is smooth in the sense of Sobolev
spaces, and that w has a zero or a set of zeros, and we will try to
determine when the level of smoothness or the size of the zero set
becomes too large to allow u € M1,

Sobolev Space:

H(TY) = {f € LX(T%) : Y [k[*|F(k)]* < o0}

kezd
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Results with a single zero

Theorem (Nitzan, M.N., Powell)

Let % < s <d, and suppose w € HS(']I'd) and w has a zero.
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Results with a single zero

Theorem (Nitzan, M.N., Powell)

Let % < s <d, and suppose w € HS(']I'd) and w has a zero.

Ifd<s<g+1, thenu= 2L ¢ M for any q satisfying

d
2§(I§E-
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Results with a single zero

Theorem (Nitzan, M.N., Powell)

Let % < s <d, and suppose w € HS(']I'd) and w has a zero.

Ifd<s < 2 +1, thenu= 1 ¢ M3 for any q satisfying
2 < q < 3=;. Conversely, for any q > 5 d there exists
w e HS(Td) such that w has a zero and u=21eMi
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Results with a single zero

Theorem (Nitzan, M.N., Powell)

Let % < s <d, and suppose w € HS(']I'd) and w has a zero.
Ifd<s < 2 +1, thenu= 1 ¢ M3 for any q satisfying
2 < q < 3=;. Conversely, for any q > 5 d there exists
w e HS(Td) such that w has a zero and u=21eMi
Ifs=42+1, thenu= L1 ¢& M3 for any q satisfying
2<g< .

N
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Results with a single zero

Theorem (Nitzan, M.N., Powell)

Let % < s <d, and suppose w € HS(']I'd) and w has a zero.
Ifd<s < 2 +1, thenu= 1 ¢ M3 for any q satisfying
2 < q < 3=;. Conversely, for any q > 5 d there exists
w e HS(Td) such that w has a zero and u=21eMi
Ifs=4 + 1 then u = L ¢ MY for any q satisfying
2<q< 55 Conversely, there exists w € C’OO(Td) with a
zero, such that u=1/w e M3 for any q > ﬂ
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Results with a single zero

Theorem (Nitzan, M.N., Powell)

Let % < s <d, and suppose w € HS(']I'd) and w has a zero.
Ifd<s < 2 +1, thenu= 1 ¢ M3 for any q satisfying
2 < q < 3=;. Conversely, for any q > 5 d there exists
w e HS(Td) such that w has a zero and u=21eMi
Ifs=4 + 1 then u = L ¢ MY for any q satisfying
2<q< 55 Conversely, there exists w € C’OO(Td) with a
zero, such that u=1/w e M3 for any q > ﬂ

» Proof relies on Sobolev Embedding Theorem in Holder spaces.
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Results with a single zero

Theorem (Nitzan, M.N., Powell)

Let % < s <d, and suppose w € HS(']I'd) and w has a zero.

Ifd<s < 2 +1, thenu= 1 ¢ M3 for any q satisfying
2 < q < 3=;. Conversely, for any q > 5 d there exists

w e HS(Td) such that w has a zero and u=21eMi
Ifs=4 + 1 then u = L ¢ MY for any q satisfying
2<q< 55 Conversely, there exists w € C’OO(Td) with a
zero, such that u=1/w e M3 for any q > ﬂ

» Proof relies on Sobolev Embedding Theorem in Holder spaces.

» For s > g + 1, we can’t say more than the bound in part 2
unless we require a zero of a larger order.
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Zero Sets of Larger Hausdorff Dimension

» We are also interested in finding a similar result when the zero
set of w = % has a larger Hausdorff dimension.
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Zero Sets of Larger Hausdorff Dimension

» We are also interested in finding a similar result when the zero
set of w = % has a larger Hausdorff dimension.

» In this case, our functions may not be continuous, so we
define our zero set as

Y(w) =<2 € T: limsup
7—0 |BT’ B ()

lw(y)|dy = 0}-
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Zero Sets of Larger Hausdorff Dimension

» We are also interested in finding a similar result when the zero
set of w = % has a larger Hausdorff dimension.

» In this case, our functions may not be continuous, so we
define our zero set as

1
Y(w) =< x € T: limsup —— lw(y)|dy =0 .
7—0 |BT’ B ()

» A similar question was studied by Jiang, Lin ('03) and
Schikorra ('13) with the Fourier multiplier condition replaced
with an integrability condition.
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Zero Sets of Larger Hausdorff Dimension

Theorem (Nitzan, M.N., Powell)

Let 0 < o <d and d_T" <s<d—o. Suppose w € W*%(T¢) and
He (X(w)) > 0.
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Zero Sets of Larger Hausdorff Dimension

Theorem (Nitzan, M.N., Powell)
Let 0 < o <d and d_T" <s<d—o. Suppose w € W*%(T¢) and
H(Z(w)) > 0.

Ifd_T" <s <min(d—a,%+1), then u =1 ¢ M3 for any g

Satisﬂ/ing 2 § q S ﬁi)’/?
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Zero Sets of Larger Hausdorff Dimension

Theorem (Nitzan, M.N., Powell)
Let 0 < o <d and d_T" <s<d—o. Suppose w € W*%(T¢) and
H(Z(w)) > 0.
fd_" <s <min(d—a,%+1), then u =1 ¢ M3 for any g
satlsfy/ng 2<¢qg<

ds a/2"
If s = 2+1<d—a, then u = 1 ¢ M3 for any q satisfying
2<qg<gy 2

o’
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Zero Sets of Larger Hausdorff Dimension

Theorem (Nitzan, M.N., Powell)
Let 0 <o <d and %52 < s < d— 0. Suppose w € W*2(T%) and

He(E(w)) > 0.
fd_" <s<min(d—a,%+1), then u =1 ¢ M3 for any g
SatISfyIng2 < q < m
If s = 24—1<d—a, then u = -,

2<q< 20’
/fs:d—a<§+1, thenuz%%/\/l% for any q.

L ¢ MY for any q satisfying
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Zero Sets of Larger Hausdorff Dimension

Theorem (Nitzan, M.N., Powell)
Let 0 < o <d and d_T" <s<d—o. Suppose w € W*%(T¢) and
He (X(w)) > 0.
fd_" <s<min(d—a,%+1), then u =1 ¢ M3 for any g
SatISﬂ/lng 2 < q < m
If s = 2+1 <d-—o, then u = % ¢ M1 for any q satisfying
2< q < 2 o’
lfs:d—a< §+1, then u =

gl

¢ M1 for any q.

» Part 3 is sharp, but parts 1 and 2 likely are not.
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Zero Sets of Larger Hausdorff Dimension

Theorem (Nitzan, M.N., Powell)

Let 0 < o <d and d_T" <s<d—o. Suppose w € W*%(T¢) and
He (X(w)) > 0.
Ifd_T" <s <min(d—a,%+1), then u =1 ¢ M3 for any g

Satisﬂ/ing 2 § q S #ﬂo_m

Ifs:%+1 <d-—o, then u = % ¢ M1 for any q satisfying
2 §q< d722dfo”

/fs:d—a<%+1, thenuz%%/\/l% for any q.

» Part 3 is sharp, but parts 1 and 2 likely are not.
» Based on the results of Jiang, Lin ('03) and Schikorra ('13), |
(we?) conjecture that part 1 holds with 2 < ¢ < %.
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Zero Sets of Larger Hausdorff Dimension

Theorem (Nitzan, M.N., Powell)

Let 0 < o <d and d_T" <s<d—o. Suppose w € W*%(T¢) and
He (X(w)) > 0.
Ifd_T" <s <min(d—a,%+1), then u =1 ¢ M3 for any g

Satisﬂ/ing 2 § q S #ﬂo_m

Ifs:%+1 <d-—o, then u = % ¢ M1 for any q satisfying
2 §q< d722dfo”

/fs:d—a<%+1, thenuz%%/\/l% for any q.

» Part 3 is sharp, but parts 1 and 2 likely are not.

» Based on the results of Jiang, Lin ('03) and Schikorra ('13), |
(we?) conjecture that part 1 holds with 2 < ¢ < %.

» Proof uses a version of Poincare Inequality from Jiang, Lin

('03) and Schikorra ('13).
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Extensions

We have a few variations of these multiplier results
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Extensions

We have a few variations of these multiplier results

» Multipliers in M for certain ranges of p and q.
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Extensions

We have a few variations of these multiplier results
» Multipliers in M for certain ranges of p and q.
» Matrix-weights where W (x) is a K x K matrix
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Extensions

We have a few variations of these multiplier results
» Multipliers in M for certain ranges of p and q.
» Matrix-weights where W (z) is a K x K matrix

» Nonsymmetric verisons where the Sobolev smoothness is
different in different axis directions.
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The Balian-Low Theorem

Theorem (Battle ('88) Daubechies, Coifman, Semmes ('90))

Let f € L*(R). If G(f) = {€*™™® f(x — n)}snnez is a Riesz basis
for L?(R), then

(/R =111 @7)’%) ( / |£P|f<§>|2ds) — .
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The Balian-Low Theorem

Theorem (Battle ('88) Daubechies, Coifman, Semmes ('90))

Let f € L*(R). If G(f) = {€*™™® f(x — n)}snnez is a Riesz basis
for L?(R), then

(/R =111 @7)’%) ( / |£P|f<§>|2ds) — .

» Conclusion rephrased: “either f ¢ H(R) or f ¢ H(R)."
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The Balian-Low Theorem

Theorem (Battle ('88) Daubechies, Coifman, Semmes ('90))

Let f € L*(R). If G(f) = {€*™™® f(x — n)}snnez is a Riesz basis
for L?(R), then

(/R =111 @7)’%) ( / |£P|f<§>|2ds) — .

» Conclusion rephrased: “either f ¢ H(R) or f ¢ H(R)."
» Assume f, f € H'(R). Smoothness passed to Zf € H} (R?).
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The Balian-Low Theorem

Theorem (Battle ('88) Daubechies, Coifman, Semmes ('90))

Let f € L*(R). If G(f) = {€*™™® f(x — n)}snnez is a Riesz basis
for L?(R), then

(/R =111 @7)’%) ( / |£P|f<§>|2ds) — .

» Conclusion rephrased: “either f ¢ H(R) or f ¢ H(R)."
» Assume f, f € H'(R). Smoothness passed to Zf € H} (R?).

» Quasiperiodicity of Z f forces it to have a (essential) zero.
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The Balian-Low Theorem

Theorem (Battle ('88) Daubechies, Coifman, Semmes ('90))

Let f € L*(R). If G(f) = {€*™™® f(x — n)}snnez is a Riesz basis
for L?(R), then

(/R =111 @7)’%) ( / |§P|f<§>|2ds) — .

Conclusion rephrased: “either f ¢ H(R) or f ¢ H(R)."
Assume f, f € H'(R). Smoothness passed to Zf € H} (R?).

Quasiperiodicity of Z f forces it to have a (essential) zero.

v

v

v

v

The Riesz basis property forces |Z f| > A > 0, which gives
contradiction.
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Sharp (C,)-system BLT

Theorem (Nitzan, M.N, Powell)

Fix g > 2. IfG(f,1,1) = {e*™™* f(x — n)};mnez is an exact
(C,)-system for L*(R), then

([ rvmygepar) ( [ ooiopie) oo @)

Equivalently, either f ¢ H>A=VO(R) or f ¢ H21-1/9(R).
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Sharp (C,)-system BLT

Theorem (Nitzan, M.N, Powell)

Fix g > 2. IfG(f,1,1) = {e*™™* f(x — n)};mnez is an exact
(C,)-system for L*(R), then

([ rvmygepar) ( [ ooiopie) oo @)

Equivalently, either f ¢ H>A=VO(R) or f ¢ H21-1/9(R).

» Follows from single zero multiplier result.
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Sharp (C,)-system BLT

Theorem (Nitzan, M.N, Powell)

Fix g > 2. IfG(f,1,1) = {e*™™* f(x — n)};mnez is an exact
(C,)-system for L*(R), then

([ rvmygepar) ( [ ooiopie) oo @)

Equivalently, either f ¢ H>A=VO(R) or f ¢ H21-1/9(R).

» Follows from single zero multiplier result.

» Nitzan, Olsen ('11) proved similar result, with an additional e
on the weight, as well as non-symmetric versions.
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Sharp (C,)-system BLT

Theorem (Nitzan, M.N, Powell)

Fix g > 2. IfG(f,1,1) = {e*™™* f(x — n)};mnez is an exact
(C,)-system for L*(R), then

([ rvmygepar) ( [ ooiopie) oo @)

Equivalently, either f ¢ H>A=VO(R) or f ¢ H21-1/9(R).

» Follows from single zero multiplier result.

» Nitzan, Olsen ('11) proved similar result, with an additional e
on the weight, as well as non-symmetric versions.

» The ¢ = oo case gives the BLT for exact systems (originally
due to Daubechies, Janssen ('93)) and nonsymmetric versions
were given by Heil and Powell ('09)
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Shift-Invariant Spaces with Extra Invariance

For a given shift-invariant space V = V/(f) ¢ L?(R%),
» For ' € R%, V is T-invariant if T,V CVforall yel.
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Shift-Invariant Spaces with Extra Invariance

For a given shift-invariant space V = V/(f) ¢ L?(R%),
» For ' € R%, V is T-invariant if T,V CVforall yel.

» For any lattice I' D Z4, there exists f € L?(R%) such that
V(f) is precisely I'-invariant
d =1 by Aldroubi, Cabrelli, Heil, Kornelson, Molter (2010)
d > 1 by Anastasio, Cabrelli, Paternostro (2011)
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Shift-Invariant Spaces with Extra Invariance

For a given shift-invariant space V = V/(f) ¢ L?(R%),
» For ' € R%, V is T-invariant if T,V CVforall yel.
» For any lattice I' D Z4, there exists f € L?(R%) such that
V(f) is precisely I'-invariant
d =1 by Aldroubi, Cabrelli, Heil, Kornelson, Molter (2010)
d > 1 by Anastasio, Cabrelli, Paternostro (2011)

» Aldroubi, Sun, Wang (2011), and Tessera, Wang (2014),
showed that Balian-Low type results exist for shift-invariant
spaces with extra-invariance.
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(Cy)-system SIS BLT

Theorem (Nitzan, M.N., Powell)

Fix 2 < q < co. Suppose that f € L?(R) is nonzero and V (f) is
% Z-invariant. If T(f) is a minimal (Cy)-system in V(f), then

[ 1aP4-19) | f (@) = .
R
Equivalently, fgé H'™-Y4(R).

» If T(f) is a minimal system for V(f), then T'(f) is a
(Coo)-system. Thus, the ¢ = oo case gives us a result for
minimal systems.

» (Hardin, M.N., Powell) In the ¢ = 2 case, the result holds in
higher dimensions, and without assuming minimality. (i.e.,
frames and not necessarily Riesz bases)
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Minimal (C,)-result Higher Dimensions

Theorem

Fix q such that 2 < q < oo, and let s = min(d(5 — %) +3,1). Let
0 # f € L*(R%), and suppose V (f) is invariant under some
non-integer shift. If T(f) is a minimal (Cy)-system for V(f) then

/ 2% £ () P = oo.
Rd
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Minimal (C,)-result Higher Dimensions

Fix q such that 2 < q < oo, and let s = min(d(5 — %) +3,1). Let
0 # f € L*(R%), and suppose V (f) is invariant under some
non-integer shift. If T(f) is a minimal (Cy)-system for V(f) then

/ 2% £ () P = oo.
Rd

» Can be extended to finitely many generators, requires a
matrix-weight version of the Fourier multiplier results.
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Minimal (C,)-result Higher Dimensions

Fix q such that 2 < q < oo, and let s = min(d(5 — %) +3,1). Let
0 # f € L*(R%), and suppose V (f) is invariant under some
non-integer shift. If T(f) is a minimal (Cy)-system for V(f) then

/ 2% £ () P = oo.
Rd

» Can be extended to finitely many generators, requires a
matrix-weight version of the Fourier multiplier results.

» Probably the sharp sis 1 — 1/q in all dimensions.
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Where does the zero come from?
» Extra-invarance can be characterized in terms of Pf.

(Aldroubi, Cabrelli, Heil, Kornelson, Molter (2010), Anastasio,
Cabrelli, Paternostro (2011))
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Where does the zero come from?

» Extra-invarance can be characterized in terms of Pf.
(Aldroubi, Cabrelli, Heil, Kornelson, Molter (2010), Anastasio,
Cabrelli, Paternostro (2011))

» The condition is somewhat technical, so lets look at an
example of f € L?(R?) and V(f) having 1Z2-invariance.
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Where does the zero come from?

» Extra-invarance can be characterized in terms of Pf.
(Aldroubi, Cabrelli, Heil, Kornelson, Molter (2010), Anastasio,
Cabrelli, Paternostro (2011))

» The condition is somewhat technical, so lets look at an
example of f € L?(R?) and V(f) having 1Z2-invariance.

P(x) =Y |fl@- k)P

kez2
=) |z — 2k)] + > |f(z — 2k + e1)[?
kEZQ keZ2
+ Y Ifle-2k+e)P+ Y 1Fla— 2k +e1 + )
keZ? ke72

= Pa(x) + Po(x + €1) + Pa(x + e2) + Pa(z + e1 + €2).
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Where does the zero come from?

» Extra-invarance can be characterized in terms of Pf.
(Aldroubi, Cabrelli, Heil, Kornelson, Molter (2010), Anastasio,
Cabrelli, Paternostro (2011))

» The condition is somewhat technical, so lets look at an
example of f € L?(R?) and V(f) having 1Z2-invariance.

P(x) =Y |fl@- k)P

keZ?
=) |z —2k)2 + > |f(z — 2k + e1))?
kez? kez2
+ > |fla—2k+ e+ ) |flw—2k+e1 + )|
keZ? ke72

= Pa(x) + Po(x + €1) + Pa(x + e2) + Pa(z + e1 + €2).

> V(f) is $Z%invariant iff P,(z) and it's shifts have disjoint
support.

Uncertainty Principles for Fourier Multipliers M. Northington V (mcnv3@gatech.edu) June 6, 2018



Thanks

Thanks!
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